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The regulation of B cell life span is essential for 
normal immunity. The short life of newly gen-
erated immature B cells assures their rapid turn-
over and permits selection of nonautoreactive 
and functionally fi t mature B cells. The  longevity 
of mature B cells is required to maintain a highly 
diverse immunoglobulin repertoire in  preparation 
for antigenic challenge. The exceeded life span 
of antigen-experienced memory cells assures the 
most effi  cient immune response to recurring 
pathogens (1, 2).

The survival of B cells is sustained by a con-
stant and apparently ligand-independent tonic 
signal mediated by the cell surface–expressed B 
cell antigen receptor (BCR) (3, 4). In addition, 
survival of B cells is supported by B cell–activating 
factor of the TNF family (BAFF; also known as 
BLyS) produced by stromal cells and various cell 
types of myeloid origin. BAFF promotes B cell 
survival by a triggering of the B cell surface–
 expressed BAFF receptor (BAFF-R) (5, 6).

Both BCR and BAFF-R signals are crucial 
for B cell survival. Genetic ablation of the BCR 
from mature B cells leads to B cell death (3, 4). 
Similarly, inactivating mutations in BAFF or 
BAFF-R or BAFF neutralization by a geneti-
cally engineered soluble BAFF-binding protein 
reduce B cell life span and lead to immuno-
defi ciency (7–12). Conversely, increased levels 
of BAFF in the serum of mice that express both 

endogenous and transgenic BAFF extend B cell 
survival beyond physiological limits (13, 14), 
but the negative eff ect of this prolonged B cell 
life span causes BAFF-transgenic mice to de-
velop lupus-like autoimmune disease.

The signaling mechanisms of BAFF-medi-
ated B cell survival are not very well under-
stood. It is known that binding of BAFF to 
BAFF-R causes processing of NF-κB2 precur-
sor protein p100 to active p52, which has the 
potential to initiate transcription of antiapop-
totic genes such as members of the Bcl-2 family 
(15, 16). BAFF also counteracts BCR-induced 
up-regulation of Bim in an Erk-dependent 
fashion (17). Furthermore, BAFF promotes 
the cytoplasmic retention of protein kinase C δ 
(PKCδ), thus containing the proapoptotic po-
tential of PKCδ upon translocation to the nu-
cleus (18). However, it is not clear whether this 
eff ect refl ects a direct impact of BAFF on PKCδ 
or the overall physiological condition of BAFF-
treated B cells.

It is well established that the bioenergetic 
state of cytokine-treated hematopoietic cells 
and T lymphocytes correlates directly with their 
survival (for review see reference 19). Prosur-
vival cytokines such as IL-3 and IL-7 promote 
nutrient uptake, increase glycolysis rates, and 
regulate mitochondrial energy homeostasis (20, 
21). Therefore, it seems plausible that, similar 
to other prosurvival cytokines, BAFF also con-
trols B cell survival by the regulation of B cell 
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metabolic fi tness. In this paper, we identify PKCβ and Akt as 
critical components of a BAFF-induced signaling chain that 
controls B cell survival and metabolic fi tness.

RESULTS

BAFF promotes B cell metabolic fi tness and prepares 

for antigen-induced proliferation

Incubation of mature B cells with BAFF drastically changes 
the state of B cell metabolism. Treatment with BAFF increases 
B cell size, cellular protein content, and mitochondrial mem-
brane potential (Fig. 1, A–C). BAFF-treated cells show changes 
in gene transcription that direct these cells toward production 
of proteins required for glycolytic metabolism and cell cycle 
progression. Analysis of polyribosome-associated and, hence, 
actively translated mRNAs revealed two large mRNA clusters 
that were particularly prominent in BAFF-treated B cells 
(Fig. 2, A–C; and Table S1, available at http://www.jem.org/
cgi/content/full/jem.20060990/DC1). The fi rst cluster contains 
mRNAs collectively related to glycolysis. The second cluster 
overrepresented in BAFF-stimulated B cells contains mRNAs 
for proteins controlling cell cycle, chromosome condensation, 

and mitosis. The BAFF-induced up-regulation of cell cycle pro-
gression proteins such as cyclin D and cyclin E, Cdk4, Mcm2 
and 3, the proliferation marker Ki67, and Survivin was inde-
pendently confi rmed by protein expression analysis (Fig. 3 A). 
Analysis of total RNA from BAFF-treated cells showed that 
the abundance of these transcripts refl ects overall changes in 
the pattern of gene expression rather then BAFF-mediated 
 recruitment of the selected mRNAs into polyribosomes 
(Table S2).

Stimulation with BAFF resulted not only in the tran-
scription and translation of genes required for cell cycle pro-
gression but also in phosphorylation of the key cell cycle 
controlling Rb protein (Fig. 3 A, bottom), which is prereq-
uisite for the release of E2F and cell cycle entry into S phase 
(22). Despite the substantial accumulation and modifi cation 
of cell cycle–controlling proteins, BAFF does not induce B 
cell proliferation in vitro (Fig. 3 B). However, preincuba-
tion of B cells with BAFF accelerates proliferation in response 
to BCR stimulation compared with BCR-only triggered 
cells (Fig. 3 B). This result points to a role of BAFF in main-
taining B cells in a state of immediate responsiveness to 
 antigenic stimulation.

BAFF activates Akt and induces phosphorylation of key 

regulatory Akt targets

Increased protein synthesis in response to BAFF suggests 
that BAFF controls activation of proteins required for trans-
lation. Indeed, treatment with BAFF caused phosphoryla-
tion of eukaryotic translation initiation factor 4E (eIF4E) 
and its inhibitor, eIF4E-binding protein 1 (4E-BP1; Fig. 4 A). 
Both are required for active protein synthesis: phosphory-
lation of eIF4E increases its binding to capped mRNAs, 
whereas 4E-BP phosphorylation disrupts its binding to 
eIF4E. Treat ment with BAFF also leads to phosphorylation 
of S6 ribosomal protein, a hallmark of active protein syn-
thesis (23–25).

Phosphorylation of 4E-BP, which is known to be con-
trolled by Akt and Pim-2 (19), suggested an involvement 
of these kinases in BAFF signaling. Activation of Akt re-
quires its recruitment to the plasma membrane, where it 
binds to the lipid second messenger phosphatidyl inositol-
3,4,5-triphosphate via its pleckstrin homology domain. 
This induces a conformational change, which allows for 
Akt phosphorylation at threonine 308 by PDK1 and at ser-
ine 473 by a second kinase, whose identity is still contro-
versial (26, 27).

We found that treatment with BAFF led to a rapid phos-
phorylation of Akt at both S473 and T308, which, after a 
transitory decline after 1 h of stimulation, regained a stably 
high level by 24 h and beyond (Fig. 4 B and not depicted). 
Activation of Akt by BAFF was associated with the phos-
phorylation of several Akt targets known to control cell sur-
vival and metabolism (Fig. 4 C). First, treatment with BAFF 
lead to phosphorylation of the GTPase-activating protein 
tuberous sclerosis complex 2 (TSC2), which promotes pro-
tein synthesis through activation of mammalian target of 

Figure 1. BAFF increases size, protein content, and mitochondrial 

membrane potential of B cells. Data represent three independent experi-

ments. (A) Mature B cells were incubated in culture medium in the presence 

of BAFF, and the cell size was measured by FACS analysis of the forward 

scatter (FSC). (B) Protein amount per million B cells. Error bars in A 

and B represent SD. (C) Mitochondrial membrane potential was meas-

ured by TMRE labeling. Histograms show the TMRE fluorescence of 

B cells incubated in the absence (shaded area, continuous line) or presence 

(open area, bold line) of BAFF. In control samples (dashed lines), membrane 

potential was dissipated by addition of the uncoupling agent carbonyl 

 cyanide m-chlorophenyl hydrazone.
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 rapamycin (28, 29). Second, BAFF induced the phosphory-
lation and, hence, inactivation of glycogen synthase kinase–3 
(GSK-3). GSK-3 has been found to cause apoptosis by 
 inducing MCL1 degradation and compromising mitochon-
drial membrane integrity (30). Finally, stimulation of B cells 
with BAFF led to phosphorylation of FoxO1 and its subse-
quent degradation. Members of the FoxO family of transcrip-
tion factors are known to play a key role in the regulation of 
genes required for cell cycle progression, glycolytic metabo-
lism, and survival (31, 32).

Growth factor stimulation of hematopoietic cells in-
duces Pim-2 expression, which confers resistance to atro-
phy and cell death (33). Treatment with BAFF strongly 
induced all three isoforms of Pim-2 within 24 h of stimula-
tion (Fig. 4 D).

BAFF-induced Akt activation depends on phosphoinositide 

3-kinase (PI3K) activity

Akt-activation requires its binding to specifi c phosphoinosi-
tides, which are generated by PI3K at the plasma membrane 
(27). The predominant form of PI3K in B cells consists of 
the regulatory subunit p85α and the catalytic subunit p110δ 
(34). We found that treatment with BAFF led to tyrosine 
phosphorylation of a p85-associated protein with a molecular 
weight of approximately p110 (Fig. 5 A). Sequence analysis 
of a protein that co-migrated with phospho-p110 confi rmed 
that this protein represents the catalytic subunit p110δ 
 (unpublished data). It is therefore possible that BAFF  activates 
PI3K by inducing the tyrosine phosphorylation of its catalytic 
subunit. A similar phenomenon has previously been reported 
in B cell lines stimulated through the BCR (35, 36).

Figure 2. BAFF induces selective changes in gene transcription. The 

expression pattern and levels of polysome-associated mRNAs in unstimu-

lated and BAFF-treated B cells were determined by Affymetrix microarray 

analysis (Table S2). The biological signifi cance of BAFF-induced changes in 

gene expression was then analyzed using the GO tool GoMiner. GO catego-

ries representing biological processes are displayed as a directed acyclic 

graph, and those overrepresented in BAFF-stimulated cells are marked. 

(A) Colors indicate a statistical signifi cance of P < 0.001 (pink) or P < 0.0001 

(red). (B and C) Two prominent clusters of overrepresented GO categories are 

framed and displayed as 1 glycolysis and 2 cell cycle. Labeling represents GO 

“Biological Process” category names. Colors denote p-values as in A. Gene 

identities for the displayed GO categories are listed in Table S1.
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The activation of PI3K by BAFF is important for the regu-
lation of Akt activation and B cell survival. Treatment of 
B cells with the PI3K-specifi c inhibitor LY294002 diminished 
BAFF-induced activation of Akt and phosphorylation of Akt 
target proteins (Fig. 5 B and Fig. S1, available at http://www.
jem.org/cgi/content/full/jem.20060990/DC1). Consistently, 
BAFF-mediated B cell survival was severely impaired by con-
centrations of LY294002, which abolish Akt activity (Fig. 5 C). 
The half-life of the phosphoinositide products of PI3K is lim-
ited by the lipid phosphatase and tensin homologue deleted on 
chromosome 10 (PTEN), but BAFF did not appear to aff ect 
PTEN activity (Fig. S2), as judged by phosphorylation of the 
inhibitory PTEN phosphorylation site serine 380 (37).

PKC𝛃 controls BAFF-mediated activation of Akt

Akt activation requires two sequential events. Initially, Akt 
binding to the phosphoinositide products of PI3K induces 
a conformational change in the protein. This allows for its 
phosphorylation at two essential sites: T308 in the activation 
loop is phosphorylated by PDK1, whereas the identity of the 
kinase that phosphorylates the C-terminal S473 residue 
 remains to be determined (26, 27). In search of the kinase, 

which is responsible for Akt S473 phosphorylation and B cell 
survival in response to BAFF, we tested the role of PKCβ in 
BAFF-mediated signaling. This choice was based on two ma-
jor reasons. First, coincubation with recombinant PKCβ leads 
to Akt phosphorylation at S473 but not T308 (38). Second, 
PKCβ defi ciency in mice causes a decline in B cell survival 
in vitro and in vivo (39, 40).

We initially assessed the ability of BAFF to activate PKCβ 
by analysis of BAFF-induced PKCβ translocation to the plasma 
membrane. This translocation is an activation hallmark for 
phospholipid-dependent classic PKCs, including PKCβ (41–
43), and triggering of B cells through the BCR leads to trans-
location of PKCβ into specialized membrane microdomains 
called lipid rafts (44). We found that treatment of B cells with 
BAFF increased the amount of membrane-associated PKCβ 
(Fig. 6 A). A similar level of BAFF-induced membrane translo-
cation was observed for Akt (Fig. 6 A). Notably, membrane 
translocation of PKCβ in response to BAFF occurred outside 
lipid rafts (Fig. S3, available at http://www.jem.org/cgi/con-
tent/full/jem.20060990/DC1). Because lipid rafts of BAFF-
triggered B cells did also not contain Akt or PDK1, we conclude 
that BAFF-induced Akt activation is a raft-independent event.

Figure 3. BAFF induces up-regulation of cell cycle–controlling pro-

teins but not entry into S phase. (A) Purifi ed B cells were incubated with 

BAFF for the indicated times, and the expression levels of cell cycle regulatory 

proteins cyclin D2, cyclin E, Cdk4, Mcm2, Mcm3, Ki67, Survivin, and Rb were 

measured by Western blotting. Protein loading was controlled by tubulin 

expression level analysis. Numbers represent the fold induction normalized to 

the Tubulin signal. Hyperphosphorylated Rb (pRb) is identifi ed by a migratory 

shift. (B) B cell proliferation in vitro was measured by BrdU incorporation. 

Frequencies of BrdU+ B cells incubated in medium alone (diamonds); in the 

presence of BAFF (closed triangles), anti-IgM (closed squares), or BAFF and 

anti-IgM (open triangles); or after preincubation with BAFF for 24h followed 

by anti-IgM treatment for the indicated times (open squares) are shown.
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In addition to PKCβ translocation to the plasma mem-
brane, BAFF promotes the association of PKCβ with Akt 
(Fig. 6 B). This association does not depend on PI3K activity 
(Fig. S4, available at http://www.jem.org/cgi/content/full/
jem.20060990/DC1), but it is functionally important, as 
BAFF-induced Akt phosphorylation at S473 was greatly re-
duced in PKCβ-defi cient B cells (Fig. 6 C). In contrast, Akt 
phosphorylation at the PDK1 target site T308 was similar 
between wild-type and mutant cells. The functional link be-
tween PKCβ and Akt is specifi c to BAFF signaling, as stimu-
lation through the BCR induced Akt phosphorylation in 
PKCβ-defi cient B cells at wild-type levels (Fig. 6 D).

Loss of PKC𝛃 has an impact on BAFF-mediated 

cellular responses

PKCβ-defi cient B cells exhibit poor survival in vitro in the 
absence of stimuli (Fig. 7 A) (40). Treatment with BAFF pro-
motes the viability of mutant B cells, although they fail to 
reach wild-type survival levels regardless of the BAFF dose 
and the duration of treatment. Although PKCβ-defi cient cells 
were partially responsive to the survival action of BAFF, its 
ability to support B cell growth in vitro was severed by lack 
of PKCβ (Fig. 7, A and B). These results suggest that the 
PKCβ-mediated Akt signaling element contributes mostly to 
BAFF-mediated B cell fi tness rather than mere survival. Altered 

Figure 4. BAFF activates proteins required for protein translation 

and cell survival. (A) Purifi ed B cells were incubated with BAFF for the indi-

cated times, and phosphorylation of proteins that control translation was 

measured by Western blot analysis of eIF4E (pS209), 4E-BP1 (pS65), and S6 

(pS235/236). Membranes were stripped and reprobed with nonphospho-

specifi c antibodies against the respective proteins. Numbers represent the fold 

change of the phosphospecifi c signal normalized to the nonphosphospecifi c 

signal. (B) BAFF-induced Akt phosphorylation on S473 and T308 was meas-

ured by immunoblot analysis using the respective phosphospecifi c antibody 

(top). Akt expression was controlled by reprobing with a nonphosphospecifi c 

Akt antibody. Quantifi cation was done as in A. (C) BAFF-induced phosphor-

ylation of TSC2 at T1462 and of FoxO1 at S256 were measured by sequential 

immunoblot analysis (left). Erk is provided as a loading control to illustrate 

changes in FoxO1 total protein content. BAFF-induced phosphorylation of 

GSK-3β at S9 was measured in a similar fashion on a separate gel (right). 

In all cases, the amount of tested proteins was measured by reprobing the 

immunoblots with nonphosphospecifi c antibodies against the respective 

pro teins. Quantifi cation was done as in A. (D) BAFF induces expression of 

Pim-2. The positions of three different Pim-2 isoforms are indicated. Erk expre-

ssion is provided as a protein loading control in C and D. n.s., nonspecifi c.
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cellular responses of PKCβ-defi cient B cells were not caused 
by defective surface expression of BAFF-R (Fig. 7 C), argu-
ing for a cell-intrinsic BAFF signaling defect in the absence 
of PKCβ.

The involvement of PKCβ in BAFF-mediated signaling 
is indirectly supported by the pattern of changes in the 
PKCβ-defi cient, peripheral B cell compartment. In the ab-
sence of BAFF signaling, B cell maturation arrests between 
the T1 (CD21lo) and the T2 (CD21hi) stages (7, 10–12). 
PKCβ defi ciency impairs B cell maturation in a fashion simi-
lar to failed BAFF signaling, albeit at a lower magnitude. In 
addition, the size of the peripheral PKCβ-defi cient B cell 
compartment falls to �70% of wild-type levels (39), and im-
mature B cells prevail over mature B cells in the spleen of 
mutant mice, as judged by surface IgM and IgD expression 
(Fig. 7 D). Collectively, these observations suggest a partial 
defect in BAFF-mediated signaling and peripheral B cell mat-
uration in the absence of PKCβ.

PKC𝛃 does not control BAFF-induced regulation 

of NF-𝛋B and PKC𝛅
BAFF’s prosurvival function has been linked to its ability to 
 activate the processing of the NF-κB2 protein p100 into the 
transcriptionally active form p52 (15, 16). We fi nd that BAFF-

induced p100-p52 processing was not aff ected by the absence of 
PKCβ (Fig. 8 A). We have previously shown that BAFF controls 
B cell survival through cytoplasmic retention of the proapop-
totic kinase PKCδ (18). However, the ratio of cytoplasmic versus 
nuclear PKCδ was not altered by PKCβ defi ciency (Fig. 8 B). 
We conclude that the BAFF-mediated regulation of NF-κB 
and PKCδ occurs independent of PKCβ.

D I S C U S S I O N 

Our fi ndings show that like cytokines such as IL-3 and IL- 7, 
which promote survival of hematopoietic cells, BAFF sup-
ports B cell survival by increasing metabolic fi tness. Treat-
ment of B cells with BAFF induces transcription of mRNAs 
that encode components of carbohydrate metabolism. The 
BAFF-induced metabolic bias toward glycolysis might be es-
pecially important for B cell survival in lymphoid organs and 
at infl ammatory sites where oxygen tension is low compared 
with arterial blood (45, 46). In this environment, activation 
of glycolysis will provide energy to sustain the active protein 
synthesis and cell growth caused by BAFF. Indeed, prolonged 
BAFF treatment led to expression of the hypoxia-inducible 
factor α (unpublished data).

Normally, accumulation of proteins, particular those con-
trolling cell cycle, and increase in cell volume precedes cell 

Figure 5. PI3K controls BAFF-induced Akt activation and B cell 

survival. (A) BAFF induces phosphorylation of p110. The PI3K subunit 

p85 was immunoprecipitated from extracts of BAFF-treated cells, and 

tyrosine-phosphorylated proteins in immunoprecipitates were analyzed 

by Western blotting using antiphosphotyrosine antibody. The amounts 

of p85 and p110 in the immunoprecipitates were measured by Western 

blot analysis. (B) PI3K inhibition suppresses BAFF-induced Akt, GSK-3β, 

and FoxO1 phsophorylation. B cells were stimulated with BAFF in the 

absence or presence of LY294002, and protein phosphorylation was 

measured as described in Fig. 4. (C) Inhibition of PI3K reduces survival of 

BAFF-treated cells. B cells were cultured in medium alone (circles) or in 

the presence of BAFF (squares), LY294002 (triangles), or BAFF together 

with LY294002 (diamonds). The frequencies of viable B cells were deter-

mined by FACS analysis.
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division. However, the lack of BrdU incorporation in BAFF-
treated cells shows that BAFF does not induce DNA-replica-
tion, thus precluding cell division. Previous fi ndings show 
persistent expression of Cdk inhibitor proteins p18 and p27 
in BAFF-treated cells (47). Therefore, it is likely that high 
expression of these and possibly other cell cycle inhibitors 
prevents the proliferation of BAFF-treated B cells in the ab-
sence of an antigenic signal.

BAFF-stimulated cells enter BCR-induced proliferation 
more readily than untreated cells. This result suggests that the 
accumulation of cell cycle–controlling proteins in response to 
BAFF prepares resting B cells for an immediate immune re-
sponse upon antigenic challenge. It is also attractive to specu-
late that, in response to BAFF, B cells might establish a storage 
pool of certain cell cycle–controlling mRNAs or proteins, 
which could be used for several rounds of cell division. Such 
a mechanism would help explain the astonishingly short rep-
lication time (�7 h) of B cells at the height of the germinal 
center response (48, 49).

Akt activation requires two potentially independent 
 pathways. The PI3K-dependent pathway is shared both by 

BAFF-R and BCR. This feature of the pathway makes it 
particularly important in the regulation of B cell immunity 
and explains the poor survival of B cells in the absence of the 
p85 regulatory subunit of PI3K (50, 51). The pathway that 
involves PKCβ appears to be BAFF specifi c. Thus, PKCβ 
defi ciency impairs phosphorylation of Akt on activating ser-
ine 473 in response to BAFF but not BCR stimulation. The 
residual BAFF-induced Akt S473 phosphorylation, which 
we observe in the absence of PKCβ, indicates an ability of 
other kinases to partially adopt this role. This would be ex-
pected, as a plethora of kinases has previously been implicated 
in mediating Akt S473 phosphorylation (52).

Increased translocation of PKCβ to the plasma membrane 
and PKCβ association with Akt in response to BAFF suggest 
a direct involvement of PKCβ in BAFF signaling. Further-
more, PKCβ dependency of Akt phosphorylation at S473 
but not T308 agrees with in vitro data on Akt phosphoryla-
tion by PKCβ (38) and suggests a direct action of PKCβ on 
S473 of Akt upon BAFF stimulation.

Involvement of PKCβ in BAFF and BCR signaling pro-
vides a mechanistic explanation for the poor survival and 

Figure 6. PKC𝛃 controls BAFF-induced Akt phosphorylation. 

(A) BAFF induces membrane translocation of PKCβ. B cells were stimu-

lated with BAFF followed by preparation of cytoplasmic and membrane 

protein extracts. PKCβ and Akt content in the extracts was measured by 

Western blotting. Fraction purity and protein loading was controlled by 

Western blotting using antibodies against Tubulin and Lyn. Numbers rep-

resent the fold change of PKCβ or Akt content in the membrane fractions 

normalized to the amount of Lyn. (B) BAFF induces PKCβ-Akt association. 

B cells were stimulated with BAFF, and protein extracts were treated with 

Akt antibody or control serum. The amounts of PKCβ or Akt in immuno-

precipitates (IP) or whole cell lysates (WCL) were measured by Western 

blot analysis. Amounts of PKCβ in Akt-IPs were quantifi ed as fold change 

over the corresponding Akt signal. (C) Akt phosphorylation levels in B cell 

lysates derived from control and BAFF-treated PKCβ+/+ and PKCβ-defi cient 

mice were measured and quantifi ed as described in Fig. 4. n.d., no band 

detected by the quantifi cation software (see Materials and methods). 

(D) B cells from PKCβ+/+ and PKCβ-defi cient B cells were stimulated 

with BAFF or anti-IgM antibody as indicated. Akt phosphorylation in cell 

lysates was measured and quantifi ed as described in C. Because there was 

no band detected by the quantifi cation software at time 0 (n.d.), numbers 

in D represent the total quantifi ed area of the phosphospecifi c signal 

normalized to the total Akt content.
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 altered peripheral maturation of PKCβ-defi cient B cells in 
vitro and in vivo. However, the relatively mild reduction of 
B cell numbers in the absence of PKCβ argues in favor of 
 additional PKCβ-independent signaling pathways initiated 
by BAFF-R and/or BCR. Signaling from both receptors in-
duces activation of NF-κB, albeit through distinct  mechanisms. 
Although PKCβ has an important function in canonical 
NF-κB activation upon BCR-triggering, BAFF-induced 
NF-κB2 processing is independent of PKCβ. Another PKC 
family member, PKCδ, also plays an important role in the 
regulation of B cell survival, but it promotes cell death rather 
than survival. The proapoptotic potential of PKCδ is con-
tained by BAFF, which prevents its accumulation in the nu-
cleus. This BAFF-dependent survival mechanism can also 
function in the absence of PKCβ.

BAFF-mediated B cell survival likely represents the 
collective outcome of several BAFF-induced signaling fea-
tures, including NF-κB activation, cytoplasmic retention 
of PKCδ, and Akt activation. It is thus conceivable that the 
loss of a single signaling branch can to some degree be 
compensated for. In this case, the loss of PKCβ would be 
expected to cause some damage to B cell survival, but it 
would be less severe than the complete abrogation of BAFF 
signaling. This could explain the more dramatic changes to 
the B cell compartment in BAFF- or BAFF-R–defi cient 
mice than in PKCβ knockouts. Although PKCβ-defi cient 
B cells were partially responsive to the survival action of 
BAFF, they appeared to be largely refractive to BAFF-me-
diated cell growth. This cellular process is closely associated 
with Akt- and mammalian target of rapamycin–dependent 

Figure 7. BAFF-mediated cellular responses of PKC𝛃-defi cient 

B cells are altered in vitro and in vivo. (A) B cells from PKCβ+/+ 

(squares) and PKCβ-defi cient (triangles) B cells were cultured in medium 

alone (open symbols) or in the presence of 25 ng/ml (light gray symbols), 

100 ng/ml (dark gray symbols), or 250 ng/ml (closed symbols) of BAFF, 

and the frequencies of viable B cells were measured by FACS analysis. 

(B) The cell size of live BAFF-treated PKCβ+/+ (squares) and PKCβ-

 defi cient (triangles) B cells was measured by FACS analysis of the forward 

scatter (FSC). Symbol shadings represent the same BAFF concentrations 

as in A. (C) BAFF-R expression on splenic B220-positive cells from 

PKCβ+/+ (continuous black line) and PKCβ-defi cient (dashed black line) 

was measured by FACS. Gray lines (continuous and dashed) represent 

staining with an isotype control antibody. (D) Maturity of splenic B cells 

from PKCβ+/+ (left) and PKCβ-defi cient (right) mice was assessed by 

expression of the surface markers IgD versus IgM (top) and CD21/35 ver-

sus IgM (bottom). Only live lymphocytes are shown, and the bottom panel 

is gated on B220-positve cells. Numbers in the top panels represent fre-

quencies of cells in the respective quadrants. Gates in the bottom panels 

denote B cell developmental stages T1 (IgMhi CD21lo), T2 (IgMhi CD21hi), 

and mature (IgMint CD21int).
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signaling pathways and represents an important distinction 
between growth factor–mediated cellular fi tness on the one 
hand and mere cell survival on the other (19, 53). The lat-
ter can also be achieved through an altered ratio in the ex-
pression of pro- and antiapoptotic proteins, but, in this 
context, cells become progressively smaller (54). It appears 
that, perhaps in contrast to BAFF-induced NF-κB activa-
tion and cytoplasmic retention of PKCδ, which mediate B 
cell survival (55), PKCβ-dependent Akt activation prefer-
entially regulates the fi tness facet of BAFF-mediated cellu-
lar responses.

Our fi ndings may have practical implications. There is 
increasing evidence that BAFF plays an important role in the 
control of autoreactive B cells (8, 9, 13, 14, 56, 57). There-
fore, identifi cation of Akt and PKCβ as components of BAFF 
signaling may suggest novel ways of pharmacological inter-
vention in B cell–mediated autoimmune disorders.

MATERIALS AND METHODS
Mice. Mice were housed in the Laboratory Animal Research Center at the 

Rockefeller University under specifi c pathogen-free conditions. C57BL/6 

mice were used as a source of wild-type B cells. PKCβ-defi cient mice on a 

C57BL/6 genetic background were used for analysis (39, 40). Mice were used 

at ages of 8–12 wk. Protocols were approved by the Institutional Animal 

Care and Use Committee at the Rockefeller University.

B cell purifi cation and in vitro culture. Resting mature CD43−, 

CD62L+ B cells were isolated from spleen and lymph nodes by MACS 

(Miltenyi Biotec) according to the manufacturer’s instructions. The purity of 

mature B cells was routinely >95%. Cells were cultured for 12–16 h in 

RPMI 1640 medium supplemented with 10% FBS, 2 mM l-glutamine, 50 μM 

2-mercapto-ethanol, and 100 U/ml penicillin/streptomycin at 37°C in a 

CO2 incubator to reduce the background BAFF signaling caused by endog-

enous BAFF in vivo. This preincubation did not alter B cell size. After pre-

incubation, live cells were separated over a Ficoll gradient (Cedar Lanes), 

and their purity was assessed by trypan blue exclusion. Cells were stimulated 

in culture medium using 25 ng/ml BAFF (R&D Systems) or 1.3 μg/ml 

F(ab′)2 fragment goat anti–mouse IgM (Jackson ImmunoResearch Laboratories). 

LY294002 (Calbiochem) was used at a 10-μM concentration.

FACS analysis. Cells were analyzed on a fl ow cytometer (FACSCalibur; 

Becton Dickinson) using CellQuest software (BD Biosciences). For mea-

surement of mitochondrial membrane potential, cells were used after 12–16 h 

of preincubation without BAFF (time point 0) or after 72 h of BAFF stimu-

lation. Cells were incubated in culture medium with or without BAFF 

and containing the potentiometric dye tetramethylrhodamine ethyl ester 

(TMRE; Invitrogen) at a 100-nM concentration. Carbonyl cyanide m-

 chlorophenyl hydrazone (Sigma-Aldrich) was added to control samples at a con-

centration of 50 μM as an uncoupler of the mitochondrial respiratory chain. 

After 30 min of incubation at 37°C in a CO2 incubator, cells were immedi-

ately analyzed by FACS. For BrdU incorporation, B cells were cultured in 

the presence of 10 μM BrdU, and fi xed and stained using the FITC BrdU 

Flow Kit (BD Biosciences). For cell death analysis, an aliquot of �105 cells 

was removed from the B cell culture at various time points ranging from 

0 to 96 h. TO-PRO-3 (Invitrogen) was added at a concentration of 10 nM to 

distinguish live (TO-PRO-3−) and dead (TO-PRO-3+) cells in the culture 

samples. Upon TO-PRO-3 addition, cells were immediately analyzed by 

FACS. B cell surface marker expression was analyzed using antibodies against 

IgD, CD21/35, B220 (BD Biosciences), BAFF-R (R&D Systems), or 

a F(ab′)2 fragment of goat anti–mouse IgM (Jackson ImmunoResearch 

 Laboratories), as previously described (58).

Immunoblot analysis and immunoprecipitation. Cells were lysed in 

buff er containing 150 mM NaCl, 20 mM Tris-HCl, pH 7.5, 1 mM EDTA, 

10% glycerol, 1% NP-40, 10 μM NaF, 2 mM Na3VO4, and protease inhibi-

tor cocktail (Sigma-Aldrich). Lysates were resolved by SDS-PAGE and trans-

ferred onto Immobilon-P membrane (Millipore) using standard procedures. 

Membranes were developed with the following antibodies against: pS6 

(S235/236), S6, peIF4E (S209), eIF4E, p4E-BP1 (S65), 4E-BP1, pAkt (S473), 

pAkt (T308), pGSK-3β (S9), GSK-3β, pFoxO1 (S256), FoxO1, pTSC2 

(T1462), pPTEN (S380), PTEN, and Erk (all obtained from Cell Signaling 

Technology); Pim-2, Akt, TSC2, and PKCβ (all obtained from Santa Cruz 

Biotechnology, Inc.); p85, p110δ, and pY (4G10; all obtained from Upstate 

Biotechnology); and tubulin (Sigma-Aldrich). Where applicable, membranes 

were fi rst developed with phosphospecifi c antibodies, and stripped and re-

probed with the respective control antibody. For Akt immunoprecipitation, 

lysates were precleared with goat-serum and protein G–Sepharose (GE 

Healthcare), followed by incubation with anti-Akt antibody overnight. Anti–

ferritin heavy chain antibody (Santa Cruz Biotechnology, Inc.) was used as 

a goat immunoglobulin control. Immune complexes were precipitated with 

protein G–Sepharose, washed fi ve times in lysis buff er, and eluted in SDS 

sample buff er for SDS-PAGE. For p85 immunoprecipitation, lysates were 

precleared with rabbit immunoglobulin and protein A–Sepharose (GE 

Healthcare), followed by incubation with p85 antibody–agarose conjugate 

overnight. Immune complexes were washed and eluted as described earlier in 

this section. For analysis of NF-κB2 p100 processing and for the expression of 

cell cycle proteins, cells were lysed in a buff er containing 350 mM NaCl, 20 mM 

Hepes/NaOH, pH 7.9, 1 mM MgCl2, 0.2 mM EDTA, 0.1 mM EGTA, 

1% NP-40, 20% glycerol, 10 μM NaF, 2 mM Na3VO4, and protease inhibi-

tor cocktail (Sigma-Aldrich). Lysates were analyzed by SDS-PAGE, and 

membranes were incubated with antibodies against NF-κB2 p52 (Upstate 

Figure 8. (A) Unaltered BAFF-induced NF-B2/p100 processing in 

the absence of PKC. The presence of p100 and p52 was determined by 

Western blot analysis using an antibody against NF-κB2. Protein loading 

was controlled by Erk (p44/p42) expression. (B) Unaltered BAFF-induced 

cytoplasmic retention of PKCδ in the absence of PKCβ. Cytoplasmic and 

nuclear extracts were prepared from PKCβ+/+ and PKCβ-defi cient B cells 

at time 0 and after 24 h of incubation in the absence (−) or presence (+) 

of BAFF. PKCδ expression was assessed by Western blotting. Fraction purity 

and protein loading were controlled by Western blotting using antibodies 

against Tublin and Lamin B. n.d., no band detected by the quantifi cation 

software (see Materials and methods). 
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Biotechnology) or cyclin D2, cyclin E, Cdk4, and Mcm3 (all obtained 

from Santa Cruz Biotechnology, Inc.); Mcm2 and Rb (obtained from BD 

Biosciences); Ki67 (DakoCytomation); and Survivin (Chemicon). Signal 

quantifi cation was done using NIH Image 1.63 software.

Lipid raft isolation. Lipid rafts were prepared as described previously (59). 

The purity of the preparation was assessed by the presence of Lyn and the 

lipid raft marker ganglioside GM1, which was detected using horseradish 

peroxidase–coupled cholera toxin B subunit (Sigma-Aldrich). Proteins were 

detected using antibodies against PKCβ, Akt, and PDK1 (all obtained from 

Santa Cruz Biotechnology, Inc.) and Lyn (a gift from C. Lowell, University 

of California, San Francisco, San Francisco, CA).

Subcellular fractionation. Fractionation of primary mouse B cells into 

cytoplasmic and nuclear extracts was performed as described previously 

(18). Lysates were analyzed for expression of PKCδ using an antibody from 

Santa Cruz Biotechnology, Inc. Fraction purity was assessed by Western 

blot analysis using tubulin as cytoplasmic and lamin B (Santa Cruz Biotech-

nology, Inc.) as nuclear markers, respectively. For preparation of cytoplas-

mic and membrane fractions, cells were disrupted by hypotonic lysis for 15 min 

on ice in a buff er containing 10 mM Hepes, pH 7.4, 10 mM KCl, 1.5 mM 

MgCl2, 0.1 mM EDTA, 10 μM NaF, 2 mM Na3VO4, and protease inhibi-

tor cocktail (Sigma-Aldrich). Nuclei were removed by centrifugation at 

400 g for 10 min. The supernatant was then centrifuged at 95,000 g for 1 h 

in a SW55Ti rotor (Beckman Coulter). The supernatant was removed and 

saved as the cytoplasmic fraction. The pellet containing the membrane frac-

tion was resolved in SDS sample buff er. Fraction purity was assessed by 

Western blot analysis using tubulin as cytoplasmic and Lyn as membrane 

markers, respectively.

Polyribosome purifi cation and RNA isolation. Polyribosomes were 

purifi ed essentially as described previously (60) from unstimulated cells and 

those that had been cultured in the presence of BAFF for 36 h. In brief, 

cells were incubated in culture medium containing 100 μg/ml cyclohexi-

mide (CHX; Sigma-Aldrich) for 15 min, washed three times in PBS con-

taining CHX, and lysed in 10 mM Hepes-KOH, pH 7.4, 150 mM KCl, 

5 mM MgCl2, 1% NP-40, 0.5 mM DTT, 100 μg/ml CHX, 200 U/ml 

RNAsin (Promega), 100 U/ml SUPERase (Ambion), and EDTA-free pro-

tease inhibitor cocktail (Roche). All chemicals were of molecular biology–

grade purity and nuclease free. Nuclei were removed from the extracts by 

centrifugation at 2,000 g for 10 min. An aliquot of the lysate was saved for 

preparation of total RNA. The remaining lysate was loaded onto a 20–50% 

wt/wt linear density sucrose gradient in 10 mM HEPES-KOH, pH 7.4, 

150 mM KCl, and 5 mM MgCl2. Gradients were centrifuged for 2 h at 

40,000 g at 4°C in a SW41 rotor (Beckman Coulter). Fractions of 0.7-ml 

volume were collected with continuous monitoring at 254 nm using an 

ISCO UA-6 UV detector. To identify polyribosome-containing fractions, 

the content of ribosomal S6 protein in the fractions after trichloroacetic 

acid precipitation was determined by Western blot. For RNA isolation, 

polysome-containing fractions were pooled, and RNA was isolated from 

total and polysomal samples using TRIzol LS (Invitrogen) according to the 

manufacturer’s protocol.

Gene expression analysis. Quality of RNA was confi rmed before labeling 

by analyzing 20–50 ng of each sample using the RNA 6000 NanoAssay and 

a Bioanalyzer 2100 (Agilent Technologies). All samples had a 28S/18S ribo-

somal peak ratio of 1.8–2 and were considered suitable for labeling. 2 μg of 

total RNA was used for cDNA synthesis using an oligo(dT)-T7 primer and 

the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen).  Synthesis, 

linear amplifi cation, and labeling of cRNA were accomplished by transcrip-

tion in vitro using the MessageAmp aRNA Kit (Ambion) and biotinylated 

nucleotides (Enzo Diagnostics). 10 μg of labeled and fragmented cRNA 

were hybridized to the mouse genome MOE430 2.0 array (Aff ymetrix), 

which interrogates �39,000 transcripts at 45°C for 16 h. Automated washing 

and staining were performed using the Fluidics Station 400 (Aff ymetrix), 

 according to the manufacturer’s protocols. Finally, chips were scanned with 

a high numerical aperture and fl ying objective lens in the scanner (GS3000; 

Aff ymetrix). Raw expression data were analyzed using Microarray Analysis 

software (version 5.1; Aff ymetrix). The complete datasets can be accessed 

at http://www.ncbi.nlm.nih.gov/geo under accession no. GSE5985. Data 

were normalized to a target intensity of 500 to account for diff erences in 

global chip intensity. Genes, which were diff erentially expressed between 

unstimulated and BAFF-treated cells, were initially identifi ed using GCOS 

software. 377 transcripts showed a change of twofold or more (Table S2) and 

were selected for further analysis. Approximately three quarters of these genes 

were up-regulated upon BAFF stimulation, whereas one quarter was down-

regulated. For a biological interpretation of the diff erentially regulated genes, 

the GoMiner gene ontology (GO) tool was used. GO is a genome project 

that describes gene products in terms of their associated biological processes, 

cellular components, and molecular functions (61). GO categories are orga-

nized in directed acyclic graphs, a kind of hierarchy in which one category 

can have more than one “parent.” GoMiner identifi es GO categories that are 

over- or underrepresented in lists of genes of interest, such as diff erentially 

expressed genes from a microarray experiment, and calculates statistical sig-

nifi cance as the one-sided nominal unadjusted p-value from Fisher’s exact test 

(62). We report only those BAFF-induced biological processes in which the 

p-value was <0.001.

Protein identifi cation. Gel-resolved proteins were digested with trypsin, 

batch purifi ed on a reversed-phase microtip, and resulting peptide pools 

were individually analyzed by matrix-assisted laser desorption/ionization 

 refl ectron time-of-fl ight (MALDI-reTOF) mass spectrometry (MS; ultrafl ex 

TOF/TOF; Bruker Daltronics Inc.) for peptide mass fi ngerprinting (PMF), 

as previously described (63). Selected peptide ions (m/z) were taken to 

search a nonredundant (NR) protein database (3,245,378 entries on 28 January 

2006; National Center for Biotechnology Information) using the Peptide-

Search algorithm (developed by Matthias Mann, Max-Planck-Institute for 

Biochemistry, Martinsried, Germany; an updated version of this program is 

currently available as PepSea from Applied Biosystems/MDS SCIEX). 

A molecular mass range up to twice the apparent molecular weight (as esti-

mated from electrophoretic relative mobility) was covered, with a mass ac-

curacy restriction of <35 ppm and a maximum of one missed cleavage site 

allowed per peptide. To confi rm PMF results with scores ≤40, mass spec-

trometric sequencing of selected peptides was done by MALDI-TOF/TOF 

(MS/MS) analysis on the same prepared samples using the ultrafl ex instru-

ment in “LIFT” mode. Fragment ion spectra were taken to search the NR 

protein database using the Mascot MS/MS ion search program (version 

2.0.04 for Microsoft Windows; Matrix Science Ltd.) (64). Any tentative 

confi rmation (Mascot score ≥30) of a PMF result thus obtained was verifi ed 

by comparing the computer-generated fragment ion series of the predicted 

tryptic peptide with the experimental MS/MS data.

Online supplemental materials. Fig. S1 shows BAFF-induced Akt phos-

phorylation in the absence or presence of LY294002. Fig. S2 shows PTEN 

phosphorylation at serine 380, as well as total PTEN content in cell extracts 

prepared at various time points of BAFF stimulation. In Fig. S3, the distribu-

tion of PKCβ, Akt, and PDK1 into lipid rafts was analyzed before and after 

BAFF stimulation. Lipid raft–containing fractions are marked by the pres-

ence of Lyn and GM1. Fig. S4 shows BAFF-induced PKCβ-Akt association, 

which is not aff ected by the presence of LY294002. Table S1 lists the gene 

IDs for the GO categories presented in Fig. 2 (B and C). Table S2 contains 

the complete list of Aff ymetrix probe sets that showed a fold change of two 

or more in BAFF-stimulated versus unstimulated cells. Results are given both 

for RNA samples isolated from polysomes and analyzed in Fig. 2 (sheet 1 = 

polysome), as well as RNA samples derived from total cell lysates (sheet 2 = 

total). Online supplemental material is available at http://www.jem.org/

cgi/content/full/jem.20060990/DC1.
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