Involvement of interleukin-21 in the regulation of colitis-associated colon cancer

Carmine Stolfi,1 Angelamaria Rizzo,1 Eleonora Franzè,1 Angela Rotondi,1 Massimo Claudio Fantini,1 Massimiliano Sarra,1 Roberta Caruso,1 Ivan Monteleone,1 Pierpaolo Sileri,2 Luana Franceschilli,2 Flavio Caprioli,3 Stefano Ferrero,4 Thomas T. MacDonald,5 Francesco Pallone,1 and Giovanni Monteleone1

Chronic inflammation is a major driving force in the development of cancer in many tissues, but the array of factors involved in this neoplastic transformation are not well understood. We have investigated the role of interleukin (IL)-21 in colitis-associated colon cancer (CAC), as this cytokine is overexpressed in the gut mucosa of patients with ulcerative colitis (UC), a chronic inflammatory disease associated with colon cancer. IL-21 was increased in the gut of patients with UC-associated colon cancer, and in mice with CAC induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). After AOM+DSS treatment, IL-21 KO mice showed reduced mucosal damage, reduced infiltration of T cells, and diminished production of IL-6 and IL-17A. IL-21–deficient mice also developed fewer and smaller tumors compared with wild-type (WT) mice. Absence of IL-21 reduced signal transducer and activator of transcription 3 activation in tumor and stromal cells. Administration of a neutralizing IL-21 antibody to WT mice after the last DSS cycle decreased the colonic T cell infiltrate and the production of IL-6 and IL-17A and reduced the number of tumors. These observations indicate that IL-21 amplifies an inflammatory milieu that promotes CAC, and suggest that IL-21 blockade may be useful in reducing the risk of UC–associated colon cancer.
We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied

We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied

We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied

We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied

We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied

We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied

We next analyzed the expression of IL-21 in DSS-induced colitis and AOM+DSS-induced CAC. In initial experiments, WT mice were given 2 cycles of DSS-supplemented water preceded by AOM treatment, and then sacrificed at the end of the second DSS cycle (day 29). Analysis of IL-21 in the colon showed that DSS-colitis in WT mice was accompanied
which cells isolated from 10 mice were analyzed. (D) Representative endoscopic pictures showing colon tumors in AOM+DSS-treated WT and IL-21 KO mice at day 82. Graphs show the endoscopic scoring of tumors, calculated as indicated in the Materials and methods section, and the number of lesions. Data indicate mean ± SEM of four experiments in which at least five mice per group were considered.

by increased IL-21 (Fig. 2 A). The treatment of mice with AOM+DSS did not induce a significant increase in IL-21 expression compared with mice treated with DSS alone (Fig. 2 A). In parallel experiments, mice were treated with AOM and DSS and monitored for the development of tumors. At day 82, colonoscopy showed multiple tumors in all mice. Animals were sacrificed on day 84, and IL-21 expression was assessed in proteins extracted from tumor and nontumor samples by ELISA. IL-21 was significantly increased in tumor samples (Fig. 2 B). Flow cytometry analysis of mononuclear cells isolated from colonic tumors of WT mice sacrificed at day 84 showed that IL-21 was produced by CD4+, double-positive CD4/CD8, and double-positive CD4/NK1.1 cells, whereas no production was seen in CD4−/CD8+ and Thy1.2high/SCA-1+ cells (Fig. 2 C). IL-21−producing CD4+ T cells coexpressed mostly ROR-γt and, to a lesser extent, T-bet (Fig. 2 C). Collectively, these data indicate that IL-21 is overexpressed in the colon during CAC.

IL-21 KO mice are resistant to CAC

WT and IL-21 KO mice were treated with AOM+DSS and monitored for tumor formation. Endoscopy on day 82 showed that WT mice developed multiple and large tumors, whereas the number and size of tumors were reduced in...
Because CD4+ T cells are involved in the growth of CAC, we next determined whether the diminished tumor incidence and severity in IL-21–deficient mice was associated with reduced colonic CD4+ cells. Histological evaluation showed that in the absence of AOM+DSS treatment, the intestine of IL-21–deficient mice was normal and there was no change in the numbers of CD4+ LPMCs compared with WT mice (unpublished data).

CD4+ T cells are reduced and Foxp3–expressing T cells are increased in the colon of IL-21 KO mice

Lamina propria mononuclear cells (LPMCs) isolated from the colon of WT and IL-21–deficient mice were analyzed for CD8 and DX5 by flow cytometry. IL-21 deficiency was associated with a marked reduction in CD8+ T lymphocytes and NK cells. This finding was evident at day 0, day 29 (after the last DSS cycle), and day 84 (at the end of the experiment; Fig. 3).

Figure 4. IL-21 KO mice exhibit milder colitis compared with WT mice after AOM+DSS treatment. (A) Shown are representative images of H&E-stained sections from mice sacrificed after colitis induction (day 29). Photomicrographs are representative of four experiments in which five mice per group were studied. The percentages of mice showing various degrees of colitis are also indicated. (B) Representative dot plots show CD4+ cells in LPMCs isolated from the colon of WT and IL-21 KO mice sacrificed at day 29. Numbers indicate the percentages of cells in the designated gates. One of three representative experiments is shown. (C) Representative dot plots showing the percentages of CD4+ and/or Foxp3+ LPMCs isolated from the colon of WT and IL-21 KO mice sacrificed at day 29. The numbers indicate the percentage of cells in the designated quadrants. One of three representative experiments is shown. (D) Representative H&E (top) and immunofluorescence (bottom) pictures of colonic sections taken from IL-21 KO and WT mice at day 84 and stained with the indicated markers. Graph shows the quantification of CD4+ cells in the tumoral areas of IL-21 KO and WT mice. Data are as the mean values of positive cells per hpf ± SEM of four independently performed experiments with at least six mice per group. (E) Representative dot plots showing CD4+ cells in LPMCs isolated from colonic tumors of WT and IL-21 KO mice sacrificed at day 84. The numbers indicate the percentage of cells in the designated gates. One of three representative experiments is shown. (F) Representative dot plots showing the percentages of CD4+ and/or Foxp3+ TICs isolated from the colon of WT and IL-21 KO mice sacrificed at day 84. The numbers indicate the percentage of cells in the designated quadrants. One of three representative experiments in which at least five mice per group were considered is shown. Graph shows the fraction of Foxp3+ CD4+ T cells in TICs isolated from the colon of WT and IL-21 KO mice sacrificed at day 84. Data indicate mean ± SD of three independent experiments. In each experiment at least five mice per group were considered.
However, at the end of the last DSS cycle (day 29), IL-21–deficient mice had less severe inflammation than WT mice (Fig. 4 A). At this time point, IL-21–deficient mice also had a reduced percentage of CD4+ LPMCs compared with WT mice (Fig. 4 B). Because IL-21 inhibits the differentiation of Foxp3-expressing T cells (Fantini et al., 2007), we also examined the expression of Foxp3 in the colon of WT and IL-21 KO mice. IL-21–deficient mice had an increased fraction of Foxp3-expressing CD4 T cells at day 29 (Fig. 4 C).

To examine whether there were reduced CD4+ cells in tumors of IL-21–deficient mice, some animals were sacrificed at day 84, and tumors were excised for histology. Microscopic examination of hematoxylin and eosin (H&E)–stained colonic sections and immunofluorescence revealed mucosal infiltration by CD4+ cells in WT mice, but little infiltration in IL-21–deficient mice (Fig. 4 D). These differences were associated with higher numbers of dysplastic glands in WT mice. Flow cytometry analysis of mononuclear cells isolated from tumoral areas confirmed that IL-21–deficient mice had a diminished number of CD4+ cells (Fig. 4 E), and an increased fraction of CD4+Foxp3+ cells (Fig. 4 F).

IL-21 KO mice produce less IL-6 and IL-17A

The contribution of CD4+ T cells, and in general of immune cells, in the growth of CAC is via cytokine production (Terzic et al., 2010), so we analyzed the cytokine profile in the colon of WT and IL-21 KO mice. In both types of mice, there was an increase in IL-6 and IL-17A transcripts after AOM+DSS treatment at day 29 (Fig. 5 A). However, transcripts for IL-6 and IL-17A were significantly lower in IL-21–deficient mice (Fig. 5 A). Analysis of cytokine protein by ELISA confirmed the reduced IL-6 and IL-17A in IL-21–deficient mice (Fig. 5 B). RNA transcripts and protein for IFN-γ were not different between IL-21–deficient mice and WT mice (unpublished data). Using real-time PCR and ELISA of samples taken from tumoral areas, we confirmed that lack of IL-21 was associated with a reduction in the expression of IL-6 and IL-17A (Fig. 5, C and D), whereas IFN-γ remained unchanged (not depicted). TNF expression was not different between WT and IL-21–deficient mice at the different time points analyzed (unpublished data). Flow cytometry analysis of immune cells isolated from colonic tumors of WT mice sacrificed at day 84 showed that IL-6 was produced by T cells, F4/80+ cells, F4/80+CD206+ regulatory macrophages, and CD11b+GR1+ cells, but not Thy1.2high/SCA-1+ cells, whereas IL-17A was mostly produced by T cells and, to a lesser extent, Thy1.2high/SCA-1+ cells (Fig. 5 E). Immunofluorescence (Fig. 6 A) and flow cytometry (not depicted) indicated that IL-21 KO mice have a reduced infiltration of alternatively activated macrophages into the tumors as compared with WT mice. This finding was confirmed by the reduced expression of alternatively activated macrophages-related markers in tumor samples of IL-21 KO mice as compared with WT mice (Fig. 6 B). IL-21–deficient mice also showed a reduced number of tumor infiltrating myeloid-derived suppressor cells as compared with WT mice (Fig. 6 C), paralleled by a reduction in the content of the immunosuppressive factor ARG1 (Fig. 6 D). In contrast, the percentage of Thy1.2high/SCA-1+ cells in the tumoral areas did not differ between WT and IL-21 KO mice (Fig. 6 E).

Overall, these findings indicate that the reduced formation of colonic tumors seen in IL-21–deficient mice is associated with a diminished infiltration of both myeloid and T cells into the tumor and decreased production of IL-6 and IL-17A.

STAT3 activation is reduced in IL-21 KO mice treated with AOM+DSS

IL-21, like IL-6 and IL-17A, is a powerful activator of the transcription factor STAT3 (Caprioli et al., 2008; Hirahara et al., 2010). However, the contribution of STAT3 activation to the growth of CAC has not been fully elucidated. Therefore, we measured STAT3 activation in WT and IL-21 KO mice treated with AOM+DSS. As expected, STAT3 expression was upregulated in both WT and IL-21 KO mice after AOM+DSS treatment (Fig. 5, A and B). However, STAT3 expression was significantly lower in IL-21–deficient mice (Fig. 5 B). Analysis of cytokine protein by ELISA confirmed the reduced STAT3 expression in IL-21–deficient mice (Fig. 5, C and D). These findings indicate that the reduced formation of colonic tumors seen in IL-21–deficient mice is associated with a diminished infiltration of both myeloid and T cells into the tumor and decreased production of IL-6 and IL-17A.
were treated with AOM+DSS and, 1 wk later, randomized to receive either a neutralizing IL-21 (anti–IL-21) or control antibody until day 84. Endoscopy at day 82 showed that blockade of endogenous IL-21 significantly reduced the number of tumors (Fig. 8 A). Immunofluorescence of colonic tissues and flow cytometry of tumor-infiltrating immune cells (TICs) isolated from tumoral areas of mice sacrificed at day 84 showed significant reduction in CD4+ lymphocytes in mice given the anti–IL-21 antibody (Fig. 8, B and C). Moreover, anti–IL-21 reduced IL-6 and IL-17A in tumoral samples (Fig. 8, D–E).

Immune cells but not tumor cells express IL-21R and respond to IL-21

Finally, we examined if tumor cells are a direct target of IL-21. We analyzed IL-21R expression in colon specimens of WT mice treated with AOM+DSS and, 1 wk later, randomized to receive either a neutralizing IL-21 (anti–IL-21) or control antibody until day 84. Endoscopy at day 82 showed that blockade of endogenous IL-21 significantly reduced the number of tumors (Fig. 8 A). Immunofluorescence of colonic tissues and flow cytometry of tumor-infiltrating immune cells (TICs) isolated from tumoral areas of mice sacrificed at day 84 showed significant reduction in CD4+ lymphocytes in mice given the anti–IL-21 antibody (Fig. 8, B and C). Moreover, anti–IL-21 reduced IL-6 and IL-17A in tumoral samples (Fig. 8, D–E).
AOM+DSS and sacrificed at day 84. LPMCs and TICs expressed IL-21R, whereas no staining was seen in epithelial cells (Fig. 9 A). Flow cytometry analysis confirmed that TICs, but not tumor cells, expressed IL-21R. (Fig. 9 B). Moreover, we could not detect IL-21R in two different mouse colon cancer cell lines, i.e., CT26 and MC38, whereas IL-21R was detectable in whole colonic extracts (Fig. 9 C). Additional characterization of IL-21R–expressing TICs showed that IL-21R is broadly expressed by T and myeloid cells, but not Thy1.2high/SCA-1+ cells (Fig. 9 D). IL-21R was detectable in whole colonic extracts from two WT and two IL-21 KO mice sacrificed at day 84. LPMCs and TICs showed that IL-21R is broadly expressed by T and myeloid cells, but not Thy1.2high/SCA-1+ cells (Fig. 9 D). No STAT3 activation was seen in MC38 cells stimulated with IL-21 (Fig. 10 A). IL-21 activated STAT3 in TICs of both WT and IL-21 KO mice (Fig. 10 B), but not in epithelial cells isolated from the same mice (not depicted). IL-21 increased the production of IL-6 and IL-17A via LPMCs isolated from the colon of both WT and IL-21 KO naive mice, and cultured in the presence or absence of anti–CD3 (Fig. 10, C and D).

DISCUSSION

This study was undertaken to clarify the role of IL-21 in the process of colitis–induced colon carcinogenesis. Initially we showed up-regulation of IL-21 in the colonic mucosa of patients with UC, but also in the neoplastic areas of patients with UC-associated colon cancer and sporadic colorectal cancer, raising the possibility that IL-21 can play a major role in colon carcinogenesis during chronic inflammation. We then extended our studies using a well-accepted animal model of colon cancer (Tanaka et al., 2003). Oral administration of DSS-supplemented water to mice is a reliable model of UC, recapitulating some histological changes (i.e., mucosal neutrophil infiltration, epithelial cell loss, and ulcerations) observed in the colon of UC patients. Moreover, AOM treatment followed by repeated cycles of DSS results in chronic inflammation and the development of colon tumors in nearly 100% of the treated mice. In the absence of IL-21, colonic inflammation was reduced, as was the tumor incidence and size. These results were confirmed by functional studies in WT mice that developed fewer and smaller tumors when given a neutralizing IL-21 antibody than mice treated with a control antibody.

Analysis of mechanisms by which IL-21 mediates this effect revealed that the lack of IL-21 was paralleled by a marked reduction in the number of cytotoxic lymphocytes and NK cells, both before and after induction of colitis. These data are consistent with previous studies showing that IL-21 is important for the growth and activity of CD8+ and NK cells (Spolski and Leonard, 2008), and indicate that the resistance of IL-21–deficient mice against AOM+DSS-induced colon cancer is not caused by enhanced immune surveillance. In contrast, our data suggest that IL-21 may sustain an inflammatory circuit that promotes the growth of colon cancer during inflammation. Indeed, WT mice given a neutralizing IL-21 antibody exhibited markedly reduced colonic infiltration with CD4+ cells and produced less inflammatory cytokines, such as IL-6 and IL-17A, thought to be master regulators of tumor-associated inflammation and tumorigenesis in the colon (Atreya and Neurath, 2008; Maniati et al., 2010). By flow cytometry, we also showed that the majority of IL-6–producing cells were myeloid cells, whereas IL-17A was mostly produced by T cells. Because these cell types express IL-21R and IL-21 is produced by CD4+ cells (Monteleone et al., 2009b), it is conceivable that IL-21 produced in excess during colitis activates intracellular pathways in inflammatory cells in an autocrine/paracrine manner, thereby triggering the production of IL-6 and IL-17A with the downstream effect of amplifying colonic inflammation and favoring carcinogenesis. Our data confirm a recent study showing that innate lymphoid cells (i.e., Thy1.2high/SCA-1+ cells) produce IL-17A (Buonocore et al., 2010), whereas IL-6 and IL-21 were not expressed by these cell types. Moreover, we were not able to detect IL-21R on these cells, arguing against the possibility that innate lymphoid cells are a target of IL-21 in the colon. No change in the expression of IFN-γ and TNF was seen in IL-21–deficient mice, or WT mice given anti–IL-21. These data are somewhat different from recent studies where the incidence of AOM+DSS-induced colon cancer was markedly reduced in mice lacking TNF receptor p55, or in mice receiving a TNF blocker (Popivanova et al., 2008). Interestingly, TNF did not appear to function as a trophic factor for epithelial cells, but was needed to activate a...
tumor-promoting immune response (Popivanova et al., 2008). Although it remains to be definitely proven, the pro-inflammatory and tumor-promoting effects of TNF in this model could rely on activation of NF-κB in inflammatory cells, because TNF is a powerful inducer of this transcription factor in immunocytes (Vallabhapurapu and Karin, 2009). There is also evidence that inactivation of NF-κB in immune cells, but not in epithelial cells, decreases tumor size (Greten et al., 2004), probably as a result of a diminished production of cytokines that may serve as tumor growth factors. These findings, together with the demonstration that IL-21 is not a direct regulator of TNF synthesis in the AOM+DSS model of CAC, suggest that different, but perhaps interacting, inflammatory networks activated by locally released cytokines can contribute to ultimately promote and sustain the growth of colon cancer.

The milder colitis and reduced CD4+ T cell infiltrate seen in IL-21–deficient mice may be related to the fact that the number of Foxp3-expressing T cells was increased in the colons of these mice, and that IL-21 suppresses the peripheral differentiation of Foxp3+ cells (Fantini et al., 2007). These findings may appear surprising because regulatory T cells are known to inhibit antitumor immune response in many tissues (Wolf et al., 2005; Ishibashi et al., 2006), and therefore should enhance rather than suppress tumorigenesis. However, it is noteworthy that regulatory T cells may in fact be anti-tumorigenic in gastrointestinal cancers (Erdman et al., 2005). The above findings also fit with the demonstration that lack of IL-21 associates with reduced colonic infiltration of regulatory macrophages, such as alternatively activated macrophages and myeloid-derived suppressor cells. These data are not surprising as it was previously reported that IL-21 signals promote in vivo the differentiation of alternatively activated macrophages (Pesce et al., 2006) and that both alternatively activated macrophages and myeloid-derived suppressor cells can contribute to the growth of cancers in many organs (Sica, 2010; Greten et al., 2011; Jinushi et al., 2011).

We also showed that IL-21–deficient mice exhibited a reduced activation of STAT3, both in the lamina propria and gut epithelium after AOM+DSS administration. This was associated with the tumor-promoting immune response (Popivanova et al., 2008). Although it remains to be definitely proven, the pro-inflammatory and tumor-promoting effects of TNF in this model could rely on activation of NF-κB in inflammatory cells, because TNF is a powerful inducer of this transcription factor in immunocytes (Vallabhapurapu and Karin, 2009). There is also evidence that inactivation of NF-κB in immune cells, but not in epithelial cells, decreases tumor size (Greten et al., 2004), probably as a result of a diminished production of cytokines that may serve as tumor growth factors. These findings, together with the demonstration that IL-21 is not a direct regulator of TNF synthesis in the AOM+DSS model of CAC, suggest that different, but perhaps interacting, inflammatory networks activated by locally released cytokines can contribute to ultimately promote and sustain the growth of colon cancer.

The milder colitis and reduced CD4+ T cell infiltrate seen in IL-21–deficient mice may be related to the fact that the number of Foxp3-expressing T cells was increased in the colons of these mice, and that IL-21 suppresses the peripheral differentiation of Foxp3+ cells (Fantini et al., 2007). These findings may appear surprising because regulatory T cells are known to inhibit antitumor immune response in many tissues (Wolf et al., 2005; Ishibashi et al., 2006), and therefore should enhance rather than suppress tumorigenesis. However, it is noteworthy that regulatory T cells may in fact be anti-tumorigenic in gastrointestinal cancers (Erdman et al., 2005). The above findings also fit with the demonstration that lack of IL-21 associates with reduced colonic infiltration of regulatory macrophages, such as alternatively activated macrophages and myeloid-derived suppressor cells. These data are not surprising as it was previously reported that IL-21 signals promote in vivo the differentiation of alternatively activated macrophages (Pesce et al., 2006) and that both alternatively activated macrophages and myeloid-derived suppressor cells can contribute to the growth of cancers in many organs (Sica, 2010; Greten et al., 2011; Jinushi et al., 2011).

We also showed that IL-21–deficient mice exhibited a reduced activation of STAT3, both in the lamina propria and gut epithelium after AOM+DSS administration. This was associated with
We were however unable to detect IL-21R in tumor cells of mice administered AOM+DSS, in primary colonic epithelial cells isolated from WT mice and in CT26 and MC38, two murine CC cell lines. Stimulation of both primary and tumoral epithelial cells with IL-21 did not result in changes in cell growth, activation of STAT3, and synthesis of IL-6 and IL-17A, thus suggesting that the reduced activation of STAT3 in cancer cells of IL-21–deficient mice is not caused by the lack of a direct effect of IL-21 on these cells, but rather could be related to the diminished synthesis of IL-6 and IL-17A, given that these two cytokines directly activate STAT3.

We were however unable to detect IL-21R in tumor cells of mice administered AOM+DSS, in primary colonic epithelial cells isolated from WT mice and in CT26 and MC38, two murine CC cell lines. Stimulation of both primary and tumoral epithelial cells with IL-21 did not result in changes in cell growth, activation of STAT3, and synthesis of IL-6 and IL-17A, thus suggesting that the reduced activation of STAT3 in cancer cells of IL-21–deficient mice is not caused by the lack of a direct effect of IL-21 on these cells, but rather could be related to the diminished synthesis of IL-6 and IL-17A, given that these two cytokines directly activate STAT3.
in tumor cells (Liu et al., 2010; Wang et al., 2009). We cannot, however, exclude the possibility that in patients with CAC, IL-21 may target directly tumor cells, as our previous study showed that human colonic epithelial cells, including human colon cancer cell lines, express IL-21R and respond to IL-21 by up-regulating chemokine synthesis (Caruso et al., 2007).

Although data in the present study support the crucial role of IL-21 in the control of CAC, there is evidence indicating that forced overexpression of IL-21 in tumor cells suppresses their growth, through enhanced antitumor immunity (Skak et al., 2008). Like other cytokines, IL-21 could thus have opposing functions on the growth of tumors, depending on the tissue context and the local immune activation.

In conclusion, our studies reveal for the first time the crucial involvement of IL-21 in the mechanisms that control the incidence and ultimate growth of tumors driven by chronic inflammation. Given that inflammation has been implicated in the growth and progression of many tumors and IL-21 plays a pathogenic role in many chronic inflammatory processes associated with enhanced risk of cancers (e.g., Helicobacter pylori gastritis and celiac disease; Monteleone et al., 2009a), the use of IL-21 blockers could represent an attractive and novel approach for preventing and/or treating inflammation-associated malignancies, as well as the underlying inflammation.

MATERIALS AND METHODS

Assessment of IL-21–producing cells in human samples. Tissue sections from 5 patients with UC, 5 patients with CAC, 5 patients with sporadic colon cancer, and 5 healthy controls were cut, deparaffinized, dehydrated through xylene and ethanol, and incubated with a rabbit anti–human IL-21 antibody (Millipore) for 1 h at room temperature. Immunoreactive cells were visualized using MACH4 Universal HRP-Polymer kit with DAB (Biocare Medical), according to the manufacturer’s instructions, and lightly counterstained with hematoxylin. Isotype control sections were prepared under identical immunohistochemical conditions, replacing the primary antibody with a purified, normal rabbit IgG control antibody (Dako). Tissue sections of sporadic colorectal cancer were also stained with a monoclonal antibody against CD3 (Santa Cruz Biotechnology, Inc.). IL-21+ and CD3+ cells in 6–10 high-power fields were subsequently counted in all patients. The human studies were approved by the ethics committee of the University of Rome Tor Vergata, and each patient gave written informed consent.

Mice. WT and IL-21 KO (Il21tm1Lex) mice, both on the same genetic background (C57BL/6j), were purchased from Lexicon Genetics Inc. IL-21 KO mice are viable and do not exhibit any phenotype. Mice were maintained in standard animal cages under specific pathogen–free conditions in the animal facility at the University of Rome Tor Vergata. Mice were maintained under a strict 12-h light cycle (lights on at 7:00 am and off at 7:00 pm), and given a regular chow diet (Mucedola) ad libitum. Mice were routinely tested (every 6 mo) for heath status and infections according to the Federation of European Laboratory Animal Science Associations (FELASA) guidelines.

The murine colon cancer cell lines MC38 and CT26 were cultured in DMEM and RPMI 1640 medium, respectively, both supplemented with 10% FBS and 1% penicillin/streptomycin (P/S). RPMI 1640 containing 0.4 mg/ml collagenase D (Roche) and 0.01 mg/ml DNase I (Roche) for 10 min and the resulting cells were resuspended in RPMI 1640 containing 10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mmol/l dithiothreitol, and 1 mmol/l EDTA. IL-21, IL-6, IL-17A, and IFN-γ protein expression was measured by ELISA according to the manufacturer’s protocol (R&D Systems).

Endoscopic procedures. For continuous monitoring of colitis and tumorogenesis was used the Coloview high-resolution mouse endoscopic system (Karl-Storz; Becker et al., 2005). Tumors observed during endoscopy were counted to obtain the overall number of lesions. Tumor sizes of all tumors in a given mouse were scored using the protocol described by Becker et al. (2005). Tumor sizes were graded as follows: grade 1 (very small but detectable tumor), grade 2 (tumor covering up to one eighth of the colonic circumference), grade 3 (tumor covering up to a quarter of the colonic circumference), grade 4 (tumor covering up to half of the colonic circumference), and grade 5 (tumor covering more than half of the colonic circumference).

Histochemistry. Histopathological analysis was performed on colonic cryosections after H&E staining. The degree of inflammation at the end of colitis induction (day 29) was scored as absent, mild, moderate, or severe based on the density and extent of both the acute and the chronic inflammatory infiltrate, loss of goblet cells, and bowel wall thickening. An inflammatory infiltrate of low cellularity confined to the mucosa was scored as mild inflammation, and transmural inflammation with extension into the peri-colonic adipose tissue with high cellularity was scored as severe. Intermediate changes were scored as moderate inflammation.

Isolation of LPMCs, TICs, and intestinal epithelial cells (IECs). LPMCs and TICs were isolated as follows: entire colons from each group were longitudinally cut and washed with Ca2+- and Mg2+-free Hank’s balanced salt solution (HBSS) to remove feces and debris. Tumors and tumor-free colon pieces were finely minced and incubated in HBSS containing 5 mM EDTA, 0.145 mg/ml dithiothreitol, 1 M Hepes (Lonz), 10% FBS, and 1% penicillin/streptomycin (P/S) at 37°C for 15 min for 2 cycles. EDTA was then removed by 3 washes in HBSS, and the tissue was digested in RPMI 1640 containing 0.4 mg/ml collagenase D (Roche) and 0.01 mg/ml DNase I (Roche) for 60 min (tumor-free colon pieces) or 45 min (tumor pieces) at 37°C on a shaking platform. After collagenase digestion, the medium containing the mononuclear cells was collected and centrifuged at 400 g for 10 min and the resulting cells were resuspended in RPMI 1640 supplemented with 10% FBS and 1% P/S, and then used for flow cytometry analysis and RNA extraction. IECs were obtained by collecting the colon supernatants from HBSS/EDTA washings and then purified by negative selection using CD45 magnetic beads (Miltenyi Biotec).

Cell cultures. The murine colon cancer cell lines MC38 and CT26 were cultured in DMEM and RPMI 1640 medium, respectively, both supplemented...
Flow cytometry analysis. LPMCs and TICs were stained with surface antibodies against CD4, CD8, CD49b (DX5), NK1.1 IL-21R, Ly6C/G (GR1), CD11b (all from BD), F4/80 (Invitrogen), and CD206 (BioLegend) for 30 min at 4°C. Immune lymphoid cells were characterized as previously described (Buonocore et al., 2010) using the following antibodies: Ly6a/E (SCA-1; eBioscience), CD90.2 (Thy1.2; Miltenyi Biotec), CD117 (c-Kit; eBioscience), CD127 (IL-7R; BioLegend), and RORC+ (eBioscience). Cells were then analyzed by flow cytometry. Intracellular staining with antibodies for IL-21, Foxp3, and RORC+ (eBioscience) and IL-6, IL-17A, and T-bet (BD) was performed after 5-h stimulation with 40 ng/ml phorbol 12-myristate 13-acetate and 1 μg/ml monomycin in the presence of 2 μmol/l ionomycin (eBioscience) according to standard protocols. The percentage of IL-21−, IL-6−, and IL-17A− producing cells was evaluated by flow cytometry. To assess IL-21R expression, TICs and IECs were stained with an antibody against IL-21R (BD). STAT3 activation was evaluated in TICs and IECs, isolated from both WT and IL-21 KO mice, and MC38 cells stimulated with IL-21 and IL-6 for 15–60 min. Cells were then stained with a monoclonal antibody recognizing the phosphorylated-Y705 residue of STAT3 (BD) according to the manufacturer’s instructions, and analyzed by flow cytometry. Cells were stained in parallel with the respective control isotype antibodies.

RNA extraction, cDNA preparation, and real-time PCR. Total RNA was extracted from cells by using TRizol reagent, according to the manufacturer’s instructions (Invitrogen). A constant amount of RNA (1 μg/sample) was reverse-transcribed into complementary DNA (cDNA), and 1 μl of cDNA/sample was then amplified by real-time PCR using either iQ SYBR Green Supermix or iQ Supermix (Bio-Rad Laboratories). Murine primers were as follows: IL-6, sense, 5′-AGGCAAGTCTTCTCTAGAG-3′, and antisense, 5′-GTACCTCTGTCCTGTTAAGC-3′; IL-17A, sense, 5′-TCAGAC-TACCTCAACCGTTC-3′, and antisense, 5′-TTCAAGGACCATG-TCTTTG-3′; IL-21R, sense, 5′-GCGCAACTTCTCAAGGTG-3′, and antisense, 5′-ATCATAAGGGCTTGAAGG-3′; Fizz1, sense, 5′-CCTA-TCAAAGCTTATGTGAC-3′; and antisense, 5′-GTTTGCCTGCAAG-GTGAA-3′; Ym1, sense, 5′-CAAGGCTGTACTCTCATTCC-3′, and antisense, 5′-CAGGCACTTCTCAAGTGT-3′. IL-21 RNA expression in human samples and IFN-γ, MRC1, and ARG1 RNA expression in murine samples were evaluated using a TaqMan assay (Applied Biosystems). RNA expression was calculated relative to the housekeeping β-actin gene on the basis of the ddCt algorithm.

Western blotting. Total proteins were extracted from colonic tumors of both WT and IL-21 KO mice using the lysis buffer described in Analysis of cytokine expression in the CAC model, and then separated on an SDS-PAGE gel. Blots were incubated with p-STAT3 and Bel-XI antibodies (Santa Cruz Biotechnology, Inc.). To ascertain equivalent loading of the lanes, blots were stripped and incubated with an anti-β-actin antibody.

Administration of anti–IL-21 to mice with CAC. 6–8-wk-old female WT C57BL/6 mice receiving AOM+DSS were divided into two groups 1 wk after the last cycle of DSS (day 35), endoscopically screened to rule out the presence of visible lesions, and treated either with mouse anti–IL-21 neutralizing antibody (200 μg/mouse once a week, i.p.) or mouse IgG1 control isotype (both from Novo Nordisk A/S) until sacrifice (day 84).

Statistical analysis. Differences between groups were compared using either the Student’s t-test or the Mann–Whitney U-test. P-values < 0.05 were considered statistically significant.

This work received support from the Fondazione Umberto di Mario, Rome; the Broad Medical Research Program Foundation, Associazione Italiana per la Ricerca Sul Cancro; and Giuliani SpA, Milan, Italy. G. Monteleone has filed a patent entitled “A treatment for inflammatory diseases” (patent nr. 08154101.3), but the remaining authors have no conflict of interests to disclose.

Submitted: 1 June 2011
Accepted: 2 September 2011

REFERENCES

Downloaded from jimm.onlinelibrary.wiley.com at on June 27, 2017

Published October 10, 2011

11 of 12

