Osteoclasts (OCs) are a specialized cell subset with bone-resorbing capacity that plays a critical role in normal bone homeostasis (bone remodeling), degrading old bones and facilitating new bone formation by osteoblasts (Teitelbaum, 2000). OCs are differentiated from monocyte/macrophage-lineage hematopoietic precursor cells, termed OC precursors (OPs), and previous studies have revealed key molecular signals, such as those mediated by M-CSF and RANKL, that regulate OC differentiation (Karsenty and Wagner, 2002; Teitelbaum and Ross, 2003).

In contrast to the detailed information available concerning molecular signals for differentiation of OC, the factors controlling migration and localization of OPs onto the bone surface, the site of OC terminal differentiation, are less well analyzed. We have recently used intravital two-photon microscopy to visualize the bone cavity in live mice, and found that sphingosine-1-phosphate (S1P), a lipid mediator enriched in blood, plays a critical role in controlling the residence stability of OPs on the bone surface via the cognate receptor S1P receptor 1 (S1PR1) which directs positive chemotaxis toward S1P. We show that OPs also express S1PR2, an S1P receptor which mediates negative chemotaxis (or chemorepulsion). OP-positive chemotaxis is prominent in gradients with low maximal concentrations of S1P, whereas such behavior is minimal in fields with high maximal S1P concentrations. This reverse-directional behavior is caused by S1PR2-mediated chemorepulsion acting to override S1PR1 upgradient motion. S1PR2-deficient mice exhibit moderate osteopetrosis as a result of a decrease in osteoclastic bone resorption, suggesting that S1PR2 contributes to OP localization on the bones mediated by chemorepulsion away from the blood where S1P levels are high. Inhibition of S1PR2 function by the antagonist JTE013 changed the migratory behavior of monocyted cells, including OPs, and relieved osteoporosis in a mouse model by limiting OP localization and reducing the number of mature OCs attached to the bone surface. Thus, reciprocal regulation of S1P-dependent chemotaxis controls bone remodeling by finely regulating OP localization. This regulatory axis may be promising as a therapeutic target in diseases affecting OC-dependent bone remodeling.

© 2010 Ishii et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
transduction pathways are completely different (Takuwa, 2002; Rosen and Goetzl, 2005). S1PR1 (via its associated Gα subunit) activates the small G protein Rac and induces positive chemotaxis. In contrast, S1PR2 (signaling through G12/13α) activates another small G protein, Rho. Active Rho can inhibit activation of Rac, which can limit S1P-induced chemotaxis (Fig. 1 A). It was previously reported that S1PR2-expressing cells show reduced migration to S1P in vitro (Okamoto et al., 2000).

RESULTS AND DISCUSSION
We found that OPs express S1PR2 as well as S1PR1, and the positive migratory response to S1P was highly concentration dependent, being more vigorous at low S1P concentrations (<10⁻⁷ M) and less marked at higher concentrations (Fig. 1 B). In addition, blockade of S1PR1 signaling with pertussis toxin led to a reduction in migration below the basal level seen in the absence of S1P, suggesting that S1P could have a negative effect on cell migration under these conditions. We also found that S1PR2 deficiency enhanced positive S1P chemotaxis. To better analyze the effects of varying S1P concentrations on migration, we examined the dynamics of S1P chemotaxis in an in vitro image-based system (Fig. 1, C and D). In these experiments, cells were applied in the one chamber and S1P was added in the other chamber. In this device, a narrow plateau between the chambers generates a linear gradient experienced by the cells on the opposite side of the chemokine-filled chamber, and the motility of the cells can be assessed throughout the experiment.

![Figure 1](Downloaded_from_jem.rupress.org_on_July_6, 2017)

Figure 1. Reciprocal control of S1P chemotaxis by counteracting the receptors S1PR1 and S1PR2. (A) Scheme of function and signal transduction of S1PR1 and S1PR2. (B) In vitro chemotactic response of BM-MDM isolated from wild-type and S1PR2-deficient mice. Before the chemotaxis assay, some cells were treated with 100 nM pertussis toxin (PTX). Error bars represent SD (n = 6, from three independent experiments). (C) In vitro S1P-directed chemotaxis of RAW264.7 cells dynamically visualized using EZ-Taxiscan. Cells were loaded in one side of the chamber and the other side was filled with medium containing indicated concentration of S1P (Videos 1–3). Cells migrate into the terrace between the loading chambers. The height from floor to ceiling of the terrace is 8 µm. Bar, 100 µm. (D) Tracking courses from the start line of representative cells in low, medium, and high S1P conditions. Each curve shows the data from one experiment and represents the averaged tracking distance of multiple cells over time. The EZ-Taxiscan experiments were independently performed six times and the data were largely consistent, although the extent of the toward-and-away motions of cells in 10⁻⁷ M S1P was variable depending on the experiment. Obvious away motion could clearly be observed in five of the six experiments (62 in 83 total cells), and the cells simply stopped in the middle of the chamber without clear backward migration in one of the six experiments (11 in 83 cells). (E) In vitro S1P-directed chemotaxis of RAW264.7 cells treated with siRNAs. Cells pretreated with control RNA duplex, siRNA against S1PR1, or siRNA against S1PR2 (Videos 4–6) were loaded into the EZ-Taxiscan chamber filled with a high concentration of S1P (10⁻⁹ M) in the other side. (F) RT-PCR detection of S1PR1 and S1PR2 in siRNA-pretreated RAW264.7 cells. Cells were pretreated with control RNA duplex (control siRNA), siRNA against S1PR1 (S1PR1 siRNA), or siRNA against S1PR2 (S1PR2 siRNA). (G) Migration distance data from microscopic analysis of control (red), S1PR1 knockdown (green), and S1PR2 knockdown (blue) cells. The experiments were independently performed three times and the data were largely consistent. Each dot represents the mean value of six independent cells and error bars represent SD.
their exposure to this chemokine gradient in the imaging chamber. RAW264.7 cells, which are often used as a model of OPs, readily migrated toward a low maximal concentration of S1P (10^{-6} M; Fig. 1, C [left] and D [top]; and Video 1) but not toward a high maximal S1P concentration (10^{-6} M; Fig. 1, C [right] and D [bottom]; and Video 3). Strikingly, at an intermediate concentration, cells first moved up the S1P gradient but then arrested this movement and began to migrate back in the opposite direction in nearly all cases (Fig. 1, C [middle] and D [middle]; and Video 2). These data reveal that at high S1P concentrations, RAW264.7 cells respond by chemorepulsion rather than chemotraction.

RNA interference was used to examine the roles of S1PR1 and S1PR2 in these S1P concentration-dependent behaviors (Fig. 1, E and G). Cells were treated with siRNAs targeting S1PR1 or S1PR2 and put in a high S1P concentration field (10^{-6} M; Fig. 1, E and F). Although control cells and S1PR1 knockout cells were hardly motile, as observed in Fig. 1 C (Fig. 1, E [left two panels] and G; and Videos 4 and 5), some of the cells treated with siRNA targeting S1PR2 could migrate vigorously, irrespective of the high S1P concentration (Fig. 1, E [right] and G; and Video 6). We also confirmed that S1PR2-deficient primary cultured OPs can efficiently move toward a high S1P concentration (Fig. S1), establishing that S1PR2 expressed on OPs is indeed functional and that this receptor is responsible for the chemorepulsive behavior of these cells (Fig. 1, B and C). These results clearly demonstrate that OPs express two counteracting receptors for S1P: forward movement, promoting S1PR1, and backward movement, promoting S1PR2. The migratory behavior of OPs is thus finely regulated by the balance of the reciprocal functions of these two receptors and their differential activity at distinct concentrations of S1P.

To investigate whether S1PR2 affects OP migration in vivo as these in vitro studies would imply, we performed intravital two-photon imaging of calvaria bones (Mazo et al., 2005; Ishii et al., 2009) and examined the migratory behavior of monocytoid cells resident in the marrow spaces, including OPs. We used CX3CR1-EGFP knockin (heterozygous) mice (Jung et al., 2000; Niess et al., 2005), in which monocytoid lineage cell types predominantly expressed EGFP. We have previously confirmed that TRAP (tartrate-resistant acid phosphate)-positive mature OCs expressed EGFP in these animals (Ishii et al., 2009) and, in addition, we confirmed that EGFP^{+} cells (but not EGFP^{-}) can efficiently differentiate into OC-like cells in vitro upon stimulation with RANKL (Fig. S2). Both of these results strongly suggest that EGFP^{+} cells contain OPs.

CX3CR1-EGFP^{+} positive cells present in BM stromal locations or at the bone surface were generally stationary under control conditions (Fig. 2 A, top; and Video 7). In contrast, a subset of the labeled cells became motile 2 h after the intravenous application of 3 mg/kg JTE013 (Osada et al., 2002), a potent agonist for the S1PR2 receptor (Fig. 2 A, bottom; and Video 8), with some of the mobilized cells entering the blood circulation. The cell-mobilizing effect of JTE013 was less pronounced and took longer than was the case with the S1PR1 agonist SEW2871 (Ishii et al., 2009), although the effect was statistically significant (Fig. 2 B). Data collected using larger imaging fields revealed that there was a significant heterogeneity in cellular dynamics that correlated with location of the cells within the BM cavity (Fig. S2 and Video 9). CX3CR1-EGFP^{+} cells positioned at the bone surface hardly move, suggesting that these cells have already committed to OC differentiation. In contrast, cells in the parenchyma move after application of JTE013 and, more importantly, the migratory
activities of cells around sinusoids are significantly higher than those of cells in the parenchyma around large collecting venules. Together, these findings suggest that sinusoids are the plausible locations for mobilization of these cells.

Consistent with these findings, we also observed an elevated percentage and absolute number of monocytoid cells in peripheral blood from JTE013-treated mice (Fig. 2 C). This phenomenon was largely absent in S1PR2-deficient mice, suggesting that the effect of JTE013 is exclusively mediated by S1PR2. These results are consistent with the idea that an S1PR2 antagonist can block OP chemorepulsion mediated by the high S1P concentration in blood vessels, facilitating the recirculation of OPs.

To evaluate the in vivo impact of such S1PR2-mediated chemorepulsion of OPs on bone remodeling, we examined mice deficient in S1PR2 (Kono et al., 2004). Morphohistometric analyses using μCT showed that femora of mice genotyped as S1PR2 were moderately osteopetrotic, compared with those of control littermates (Fig. 3 A). Bone tissue density (Fig. 3 B, B.V./T.V.) of S1PR2−/− mice was significantly higher than that of controls, and concordantly trabecular density (Fig. 3 B, Tb.N.) was increased in S1PR2−/− bones. Conventional bone morphohistometrical analyses demonstrated a significant decrease in osteoclastic bone resorption (Fig. 3 C, E.S./B.S.) in S1PR2−/− bones, whereas osteoblast formation was not significantly affected. These results clearly suggest that OC attachment to and function on the bone surface was impaired in S1PR2−/− animals, leading to reduced bone resorption and moderate osteopetrosis. Because the expression of S1PR2 is high in monocytoid OPs and is hardly detected in osteoblast-lineage cells (unpublished data), and because S1PR2 deficiency did not alter the capacity of OP to differentiate into OCs (Fig. S1), this result indicates that S1PR2-mediated chemorepulsion of OPs in response to the high blood S1P concentration contributes to their localization at the bone surface and promotes osteoclastogenesis in vivo.

This newly revealed role of S1PR2-mediated control of OP migration prompted us to examine their therapeutic implications. i.p. administration of RANKL induces substantial osteoporosis within 2 d (Tomimori et al., 2009). We added daily administration of 3 mg/kg of the S1PR2 antagonist JTE013 to this regimen and examined the effect on bone mineral density (Fig. 3 C). Addition of JTE013 significantly reversed the bone density loss induced by RANKL administration (Fig. 3 C, left) by limiting osteoclastic bone resorption (Fig. 3 C, right, E.S./B.S.). This therapeutic effect of JTE013 was absent in S1PR2-deficient mice, suggesting that the function of JTE013 is dependent on this receptor. We also tested the effect of JTE013 by using ovariectomized mice, a conventional model for postmenopausal osteoporosis, and confirmed the significant therapeutic potentials (Fig. S3).

We have previously shown that the S1P–S1PR1 axis contributes to recirculation of OPs into the blood stream (thus acting as a circulation-attractive factor), whereas bone-attractive factors have not been fully elucidated. In this study, activities of cells around sinusoids are significantly higher than those of cells in the parenchyma around large collecting venules. Together, these findings suggest that sinusoids are the plausible locations for mobilization of these cells.

Consistent with these findings, we also observed an elevated percentage and absolute number of monocytoid cells in peripheral blood from JTE013-treated mice (Fig. 2 C). This phenomenon was largely absent in S1PR2-deficient mice, suggesting that the effect of JTE013 is exclusively mediated by S1PR2. These results are consistent with the idea that an S1PR2 antagonist can block OP chemorepulsion mediated by the high S1P concentration in blood vessels, facilitating the recirculation of OPs.

To evaluate the in vivo impact of such S1PR2-mediated chemorepulsion of OPs on bone remodeling, we examined mice deficient in S1PR2 (Kono et al., 2004). Morphohistometric analyses using μCT showed that femora of mice genotyped as S1PR2 were moderately osteopetrotic, compared with those of control littermates (Fig. 3 A). Bone tissue density (Fig. 3 B, B.V./T.V.) of S1PR2−/− mice was significantly higher than that of controls, and concordantly trabecular density (Fig. 3 B, Tb.N.) was increased in S1PR2−/− bones. Conventional bone morphohistometrical analyses demonstrated a significant decrease in osteoclastic bone resorption (Fig. 3 C, E.S./B.S.) in S1PR2−/− bones, whereas osteoblast formation was not significantly affected. These results clearly suggest that OC attachment to and function on the bone surface was impaired in S1PR2−/− animals, leading to reduced bone resorption and moderate osteopetrosis. Because the expression of S1PR2 is high in monocytoid OPs and is hardly detected in osteoblast-lineage cells (unpublished data), and because S1PR2 deficiency did not alter the capacity of OP to differentiate into OCs (Fig. S1), this result indicates that S1PR2-mediated chemorepulsion of OPs in response to the high blood S1P concentration contributes to their localization at the bone surface and promotes osteoclastogenesis in vivo.

This newly revealed role of S1PR2-mediated control of OP migration prompted us to examine their therapeutic implications. i.p. administration of RANKL induces substantial osteoporosis within 2 d (Tomimori et al., 2009). We added daily administration of 3 mg/kg of the S1PR2 antagonist JTE013 to this regimen and examined the effect on bone mineral density (Fig. 3 C). Addition of JTE013 significantly reversed the bone density loss induced by RANKL administration (Fig. 3 C, left) by limiting osteoclastic bone resorption (Fig. 3 C, right, E.S./B.S.). This therapeutic effect of JTE013 was absent in S1PR2-deficient mice, suggesting that the function of JTE013 is dependent on this receptor. We also tested the effect of JTE013 by using ovariectomized mice, a conventional model for postmenopausal osteoporosis, and confirmed the significant therapeutic potentials (Fig. S3).

We have previously shown that the S1P–S1PR1 axis contributes to recirculation of OPs into the blood stream (thus acting as a circulation-attractive factor), whereas bone-attractive factors have not been fully elucidated. In this study, activities of cells around sinusoids are significantly higher than those of cells in the parenchyma around large collecting venules. Together, these findings suggest that sinusoids are the plausible locations for mobilization of these cells.

Consistent with these findings, we also observed an elevated percentage and absolute number of monocytoid cells in peripheral blood from JTE013-treated mice (Fig. 2 C). This phenomenon was largely absent in S1PR2-deficient mice, suggesting that the effect of JTE013 is exclusively mediated by S1PR2. These results are consistent with the idea that an S1PR2 antagonist can block OP chemorepulsion mediated by the high S1P concentration in blood vessels, facilitating the recirculation of OPs.

To evaluate the in vivo impact of such S1PR2-mediated chemorepulsion of OPs on bone remodeling, we examined mice deficient in S1PR2 (Kono et al., 2004). Morphohistometric analyses using μCT showed that femora of mice genotyped as S1PR2 were moderately osteopetrotic, compared with those of control littermates (Fig. 3 A). Bone tissue density (Fig. 3 B, B.V./T.V.) of S1PR2−/− mice was significantly higher than that of controls, and concordantly trabecular density (Fig. 3 B, Tb.N.) was increased in S1PR2−/− bones. Conventional bone morphohistometrical analyses demonstrated a significant decrease in osteoclastic bone resorption (Fig. 3 C, E.S./B.S.) in S1PR2−/− bones, whereas osteoblast formation was not significantly affected. These results clearly suggest that OC attachment to and function on the bone surface was impaired in S1PR2−/− animals, leading to reduced bone resorption and moderate osteopetrosis. Because the expression of S1PR2 is high in monocytoid OPs and is hardly detected in osteoblast-lineage cells (unpublished data), and because S1PR2 deficiency did not alter the capacity of OP to differentiate into OCs (Fig. S1), this result indicates that S1PR2-mediated chemorepulsion of OPs in response to the high blood S1P concentration contributes to their localization at the bone surface and promotes osteoclastogenesis in vivo.

This newly revealed role of S1PR2-mediated control of OP migration prompted us to examine their therapeutic implications. i.p. administration of RANKL induces substantial osteoporosis within 2 d (Tomimori et al., 2009). We added daily administration of 3 mg/kg of the S1PR2 antagonist JTE013 to this regimen and examined the effect on bone mineral density (Fig. 3 C). Addition of JTE013 significantly reversed the bone density loss induced by RANKL administration (Fig. 3 C, left) by limiting osteoclastic bone resorption (Fig. 3 C, right, E.S./B.S.). This therapeutic effect of JTE013 was absent in S1PR2-deficient mice, suggesting that the function of JTE013 is dependent on this receptor. We also tested the effect of JTE013 by using ovariectomized mice, a conventional model for postmenopausal osteoporosis, and confirmed the significant therapeutic potentials (Fig. S3).

We have previously shown that the S1P–S1PR1 axis contributes to recirculation of OPs into the blood stream (thus acting as a circulation-attractive factor), whereas bone-attractive factors have not been fully elucidated. In this study,
we demonstrate a complex regulatory system in which S1P also acts as a bone attractant in certain conditions (actually functioning as a circulation repellant) through a different cognate receptor, S1PR2. In contrast to several chemokines that have already been reported to be important for OP localization, such as CCL2 (Binder et al., 2009), CCL9 (Yang et al., 2006), CXCL1 (Ohan et al., 2009), and CXCL12 (Granthos and Zannettino, 2007), we assume that the S1P–S1PR1/S1PR2 reciprocal axes contribute to regulating the initial entry/exit of OPs across the border of BM vasculature, rather than attachment at the bone surface by itself.

Given these data, we suggest the following model for S1P-mediated localization control of OPs in bone tissues in vivo (Fig. S3). As with other tissues and organs, the S1P concentration in bone tissues is relatively low (Maeda et al., 2010), forming a substantial S1P gradient between BM tissues (parenchyma), the sinusoids, and blood vessels, which is a prerequisite for S1P chemotaxis in situ. Because S1PR1 is readily down-regulated by endocytosis in a high S1P environment, OPs in blood vessels could enter into bones by S1PR2-mediated repulsion, although S1PR2-mediated OP entry into BM has not been fully demonstrated in the present experiments. In addition, we do not assume this is the only mechanism regulating OP entry but rather consider several bone–enriched chemokines, CXCL12 chief among them (Granthos and Zannettino, 2007), to also be involved in bone recruitment, with S1PR2-mediated chemorepulsion facilitating this process. Once they entered into the parenchyma, S1PR1 would be reexpressed on the cell surface, prompting potential reentry into the circulation if other factors (chemokines and adhesion molecules) at the bone surface do not override this chemotactic effect. Although it cannot be measured precisely, S1P concentration in BM sinusoids, because of leakage across endothelial barriers, might be expected to be intermediate between parenchymal tissues and blood vessels. If this is the case, it is plausible that OPs can exit from bone tissue via the sinusoids, whose S1P concentration can only activate S1PR1 but not S1PR2. The concept that sinusoids are the place of OP mobilization agrees with our observation that sinusoidal cells have high motility in JTE-treated BM (Fig. S2).

This study clearly demonstrates that reciprocal actions of two S1P receptors regulate the steady-state migration propensities of OPs, constituting a versatile cycle that may play a crucial role in control of osteoclastogenesis and bone remodeling. Although therapeutics in bone–resorptive disorders have so far been targeted mature OCS (such as bisphosphonates) or late OPs fairly committed to OC differentiation (such as denosumab, i.e., anti-RANKL neutralizing antibody), treatment targeting monocytoid early OPs, such as S1P modulators, might be promising as a novel line of treatment in these disorders.

MATERIALS AND METHODS

Cell culture. RAW264.7, a mouse macrophage/monocyte lineage cell line, and mouse BM-derived M-CSF–dependent monocytes (BM-MDM), containing OP cells, were cultured as previously described (Ishi et al., 2009). To stimulate osteoclastogenesis, 50 ng/ml RANKL (PeproTech) was added to the medium and the cells were incubated for 3–4 d. In some experiments, cell were pretreated with siRNAs targeting S1PR1 or S1PR2 (ON-TARGET plus siRNA library; Thermo Fisher Scientific) using a conventional transfection reagent (Lipofectamine 2000; Invitrogen).

In vitro chemotaxis chamber assay. Chemotactic migration of cells was measured in a modified Boyden chamber as described previously (Okanoto et al., 2000).

EZ-Taxiscan chemotaxis assay. Chemotaxis experiments were also conducted in an EZ-Taxiscan chamber according to the manufacturer’s protocol (Effector Cell Institute). The EZ-Taxiscan is a visually accessible chemotactic chamber, in which one compartment, containing ligand (S1P), and another compartment, containing cells, are connected by a microchannel.

A stable concentration gradient of chemoattractant can be reproducibly formed and maintained through the channel without medium flow. Phase-contrast images of migrating cells were acquired at 1-min intervals. Sequential image data were processed with ImageJ (National Institutes of Health [NIH]), equipped with an add-on program, MT Track J.

Mice. C57BL/6 mice and CX3CR1-EGFP knockin mice (Jung et al., 2000) were obtained from The Jackson Laboratory. S1PR2-deficient mice (Kono et al., 2004) were obtained from R.L. Proia (National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD). All mice were bred and maintained under specific pathogen-free conditions at animal facilities of NIH and Osaka University, and all the animal experiments were performed according to NIH institutional guidelines and Osaka University animal experimental guidelines under approved protocols. Mutant mice were genotyped by PCR. All mice were housed and handled according to the institutional guidelines under approved protocols.

Two-photon intravital bone tissue imaging. Intravital microscopy of mouse calvaria bone tissues was performed using a protocol modified from a previous study (Ishii et al., 2009). Mice were anesthetized with isoflurane (Escain; 2.5% vaporized in an 80:20 mixture of O2 and air), and the hair in the neck and scalp was removed with hair removal lotion (Epilat). The frontoparietal skull was exposed and the mouse head was immobilized in a customized stereotactic holder. A catheter was placed into the tail vein with a 30-gauge needle attached to PE-10 tubing (BD). The imaging system was composed of a multiphoton microscope (SP5; Leica) driven by a laser (MaiTai HP Ti:Sapphire; Spectraphysics) tuned to 880 nm and an upright microscope (DM6000B; Leica) equipped with a 20× water immersion objective (HCX HP Ti:Sapphire; Spectraphysics) tuned to 880 nm and an upright microscope (DM6000B; Leica) equipped with a 20× water immersion objective (HCX APO, N.A. 1.0; Leica). The microscope was enclosed in an environmental chamber in which anesthetized mice were warmed by heated air. Fluorescent cells were detected through a bandpass emission filter at 525/50 nm (for EGFP). Vessels were visualized by injecting 70 kD of Texas red–conjugated dextran (detected using a 650/50 nm filter) i.v. immediately before imaging. In some experiments, 3 mg/kg JTE013 (Tocris Bioscience) dissolved in a vehicle (PBS containing 5% acificid DMSO and 3% fatty acid–free BSA) or vehicle only was injected during the imaging.

In some experiments, 3 mg/kg JTE013 (Tocris Bioscience) dissolved in a vehicle (PBS containing 5% acificid DMSO and 3% fatty acid–free BSA) or vehicle only was injected during the imaging. Image stacks were collected at a 3-µm vertical step size at a depth of 100–150 µm below the skull bone surface. For 3D videos, four sequential image stacks were acquired at 3-µm z spacing to cover a volume of 154 µm × 154 µm × 9.0 µm. The time resolution was 1 min. Raw imaging data were processed with Imaris (Bitplane) with a Gaussian filter for noise reduction. Automatic 3D object tracking with Imaris Spots was aided with manual corrections to retrieve cell spatial coordinates over time.

Mouse treatment experiment. Nine 8-wk-old female, wild-type, or S1PR2−/− mice were injected i.p. with PBS, 2 mg/kg GST-RANKL, dissolved in PBS (Tomimori et al., 2009), and 2 mg/kg GST-RANKL and 3 mg/kg JTE013 (dissolved in PBS containing 5% acificid DMSO and 3% fatty acid–free BSA) for 2 d. The mice were then sacrificed and femurs were excised and subjected to histomorphometrical analyses.

Histomorphometry of bone tissues. Trabecular bone morphology within the metaphyseal region of distal femur was quantified using micro-CT.
mediated migration control of CX3CR1+ OP monocytes visualized using
Fig. S1 shows chemotaxis and in vitro
Online supplemental material.
reconstructed, and structural indices, such as B.V./T.V., Tb.Th., and Tb.N.,
org/cgi/content/full/jem.20101474/DC1.
knockin mice. Online supplemental material is available at http://www.jem
Mochida Memorial Foundation for Medical and Pharmaceutical Research (to M. Ishii).
from the Ministry of Health, Labor and Welfare of Japan, and by Grants from Takeda
Accepted: 10 November 2010
Submitted: 22 July 2010
for Scientific Research on Innovative Areas (221 13007; to M. Ishii), and a Funding
Human Frontier Science Program (LT-00387/2006-L and CDA-00059/2009; to
Gronthos, S., and A.C. Zannettino. 2007. The role of the chemokine
the toothless osteopetrotic rat: a key role for CCL9 (MIP-1\(\alpha\)) in os-
Trends Endocrinol. Metab. 15:417–424. doi:10.1038/nm.1945
J. Bone
CX,CR1 function by targeted deletion and green fluorescent protein
MCB.20.11.4106-4114.2000
1016/S1534-5807(02)00157-0
doi:10.1038/nprot.2009.129
Flow cytometry. All reagents were purchased from BD. To examine the
composition of peripheral blood mononuclear cells, blood was collected from
the retroorbital plexus with a heparinized glass pipette from mice treated i.p. 2 h previously with 3 mg/kg JTE013 or vehicle. After removing the
red blood cells by ACK lysis buffer (Invitrogen), cells were stained with
FITC-conjugated anti-CD11b and PE-Cy7-conjugated anti-CD3, using
conventional methods. Flow cytometric data were collected on a FACS-
Canto II (BD) and analyzed with FlowJo software (Tree Star, Inc.).

Statistical. The Mann-Whitney rank sum test was used to calculate p-values for highly skewed distributions. For Gaussian-like distributions, two-tailed
Student’s t tests were used.

Online supplemental material. Fig. S1 shows chemotaxis and in vitro
osteoclastogenesis of S1PR2 knockout OPs. Fig. S2 shows in vivo S1PR2-
mediated migration control of CX,CR1\(^+\) OP monocytes visualized using
intraarticular two-photon imaging. Fig. S3 shows the therapeutic effect of
S1PR2 antagonist JTE013 on ovariectomy-induced osteoporosis and
schematic model for S1P-mediated localization control of OPs in bone tissues.
Videos 1–6 show in vivo chemotaxis of RAW264.7 cells toward an S1P
gradient detected using the EZ-Taxiscan device. Videos 7 and 8 show intra-
articular two-photon imaging of mouse skull bone tissues of CX,CR1-EGFP
hetero knockin mice. Video 9 shows intraarticular two-photon imaging (broad
visual field) of mouse skull bone tissues of CX,CR1-EGFP heterozygous
knockin mice. Online supplemental material is available at http://www.jem.
og/cgi/content/full/jem.20101474/DC1.

We thank Dr. Richard L. Proia (National Institute of Diabetes and Digestive and
Kidney Diseases, National Institutes of Health [NIH]) for S1PR2-deficient mice.
This work was supported in part by the Intramural Research Program of the
National Institute of Allergy and Infectious Diseases, NIH, United States Department
of Health and Human Services (R.N. Germain), by grants from the International
M. Ishii], by Grants-in-Aid for Encouragement of Young Scientists (A; 22680030),
for Scientific Research on Innovative Areas (22113007; to M. Ishii), and a Funding
Program for World-Leading Innovative R&D on Science and Technology (FIRST
Program) from the Ministry of Education, Science, Sports and Culture of Japan,
by Grants-in-Aid for Research on Allergic Disease and Immunology (H21-010; to M. Ishii)
from the Ministry of Health, Labor and Welfare of Japan, and by Grants from Takeda
Science Foundation (to M. Ishii), from Japan Research Foundation for Clinical
Pharmacology (to M. Ishii), from Senn Life Science Foundation (to M. Ishii), and from
Mochida Memorial Foundation for Medical and Pharmaceutical Research (to M. Ishii).
The authors declare no competing financial interests.

Submitted: 22 July 2010
Accepted: 10 November 2010

REFERENCES
Binder, N.B., B. Niederreiter, O. Hofmann, R. Stange, T. Pap, T.M. Stinling, M.
C-C chemokine receptor-2-dependent pathways determine osteoclast
Gronthos, S., and A.C. Zannettino. 2007. The role of the chemokine
doi:10.1016/j.tem.2007.02.002
RANKL-induced expression of tetraspanin CD9 in lipid raft membrane
microdomains is essential for cell fusion during osteoclastogenesis. \textit{J. Bone
Ishii, M., J.G. Egen, F. Klauschen, M. Meier-Schellersheim, Y. Saeki, J.
6 of 6
on July 6, 2017 jem.rupress.org Downloaded from

SIP1 chemorepulsion of osteoclasts in vivo | Ishii et al.
Figure S1. Chemotaxis and in vitro osteoclastogenesis of S1PR2 knockout OPs. (A) In vitro S1P-directed chemotaxis of BM-MDM OPs isolated from wild-type and S1PR2−/− mice. Cells were loaded onto the chamber corresponding to top of the figure, and the chamber corresponding to the bottom of the figure was filled with medium containing a high concentration of S1P (10⁻⁶ M). Bar, 100 µm. (B) Migration of tracked wild-type (red) and S1PR2−/− (blue) cells. The experiments were independently performed three times and the data were largely consistent. Each dot represents the mean value of five independent cells and error bars represent SD. (C) In vitro osteoclastogenesis from wild-type and S1PR2−/− BM cells. Representative images of OC-like cells differentiated from primary OPs cultured for 4 d with 100 ng/ml RANKL from wild-type (left) or S1PR2−/− (right) BM. Bar, 50 µm. The numbers of nuclei within TRAP-positive multinucleated (more than four nuclei) cells per visual field are 230 ± 58 (mean ± SD, wild-type) and 206 ± 73 (S1PR2−/−), respectively (n = 5 for each). More than 1,000 nuclei were counted from three independent experiments.
Figure S2. In vivo S1PR2-mediated migration control of OP monocytes visualized using intravital two-photon imaging. (A) Intravital two-photon imaging of mouse skull bone tissues of heterozygous CX3CR1-EGFP knockin mice, in the presence of 3 mg/kg of the S1PR2 antagonist JTE013. (a) Basic structure of the BM cavity. Bone matrices were visualized by second harmonic generation (blue), and the microvasculature was visualized by intravenous injection of 70 kD dextran-conjugated Texas red (red). Around BM sinusoids, dextrans enter the parenchyma because of endothelial barrier leakage. (b) CX3CR1-EGFP-positive cells, including OP cells, appear green. Arrowheads, plus signs, and asterisks represent cells on the bone surface, cells in the BM parenchyma around collecting venules, and cells in the BM parenchyma around sinusoids, respectively. (c) Triple exposures of bone (blue), vessels (red), and CX3CR1-EGFP-positive cells (green). The movements of CX3CR1-EGFP-positive cells were tracked for 20 min [Video 9]. (d) Gray spheres represent cells and colored lines show the associated trajectories. (e and f) A similar visual field of CX3CR1-EGFP knockin mice in control condition. Triple exposure (CX3CR1-EGFP+ cells, bone and vessels; e), and trajectories of EGFP+ cells (f). Bars, 70 µm. (B) Summary of mean velocity of JTE-treated (top) and control (bottom) CX3CR1-EGFP-positive cells residing in the indicated regions of the BM cavity. Cells on the bone surface (within 10 µm from bone surface), in parenchyma around collecting venules (within 30 µm from collecting venules), and in parenchyma around sinusoids (within 30 µm of sinusoids) are represented as green diamonds, blue squares, and red circles, respectively. Data points (n = 69 for bone surface, n = 76 for parenchyma around collecting vessels, and n = 96 for sinusoidal parenchyma [top]; n = 62 for bone surface, n = 62 for parenchyma around collecting vessels, and n = 86 for sinusoidal parenchyma [bottom]) represent individual cells compiled from three independent experiments, and error bars represent SD. (C) In vitro differentiation of CX3CR1-EGFP cells into OC-like cells. EGFP+ and EGFP− cells were sorted by FACSAria (BD) and cultured in the presence of 100 ng/ml of recombinant RANKL. Bars, 100 µm.
Figure S3. Therapeutic effect of S1PR2 antagonist JTE013 on ovariectomy-induced osteoporosis and schematic model for S1P-mediated localization control of OPs in bone tissues. (A) Femurs were collected from mice after four different treatments: sham operated/vehicle treated, sham operated/JTE013 treated, ovariectomized/vehicle treated, and ovariectomized/JTE013 treated. JTE013 was dissolved in PBS containing 5% acidified DMSO and 3% fatty acid–free BSA (vehicle). Mice were injected i.p. either with JTE in vehicle or with vehicle only, every day for 4 wk. Bone samples were analyzed by cone-beam \(\mu\)CT. Summary of the data of bone matrix density (a; bone volume/tissue volume = B.V./T.V.), trabecular thickness (b; Tb.Th.), and trabecular density (c; Tb.N.). Data represent means acquired from five independent mice and error bars represent SD. (B) Schematic model for S1P-mediated localization control of OPs in bone tissues. A substantial S1P concentration gradient is considered to be formed among BM tissues (parenchyma), sinusoid, and blood vessels, which is a prerequisite for S1P chemotaxis in situ. OP entry from blood vessels (S1P high condition) to bone parenchyma would be facilitated by chemorepulsion mediated by S1PR2 signaling. Once in the parenchyma, OPs can either migrate deeper and attach to bone surface, attracted by BM-enriched chemokines, or recirculate into blood, possibly via BM sinusoids (low or medium S1P concentration) as a result of S1PR1 signaling.

Video 1. In vitro chemotaxis of RAW264.7 cells toward an S1P gradient detected using the EZ-Taxiscan device. Cells were loaded in one side of the chamber and the other side was filled with medium containing various concentration of S1P \((10^{-9} \text{ M, left})\). Images were taken every minute for 2 h. Playback speed is 300x.
Video 2. In vitro chemotaxis of RAW264.7 cells toward an S1P gradient detected using the EZ-Taxiscan device. Cells were loaded in one side of the chamber and the other side was filled with medium containing various concentration of S1P (10^{-7}M, middle). Images were taken every minute for 2 h. Playback speed is 300x.

Video 3. In vitro chemotaxis of RAW264.7 cells toward an S1P gradient detected using the EZ-Taxiscan device. Cells were loaded in one side of the chamber and the other side was filled with medium containing various concentration of S1P (10^{-6}M, right). Images were taken every minute for 2 h. Playback speed is 300x.

Video 4. In vitro chemotaxis of RAW264.7 cells toward an S1P gradient detected using the EZ-Taxiscan device. Cells pretreated with control RNA duplex were loaded in one side of the chamber and the other side was filled with medium containing a high concentration of S1P (10^{-6}M). Images were taken every minute for 2 h. Playback speed is 300x.

Video 5. In vitro chemotaxis of RAW264.7 cells toward an S1P gradient detected using the EZ-Taxiscan device. Cells pretreated with siRNA against S1PR1 were loaded in one side of the chamber and the other side was filled with medium containing a high concentration of S1P (10^{-6}M). Images were taken every minute for 2 h. Playback speed is 300x.
Video 6. In vitro chemotaxis of RAW264.7 cells toward an S1P gradient detected using the EZ-Taxiscan device. Cells pretreated with siRNA against S1PR2 were loaded in one side of the chamber and the other side was filled with medium containing a high concentration of S1P (10^{-6} M). Images were taken every minute for 2 h. Playback speed is 300×.

Video 7. Intravital two-photon imaging of mouse skull bone tissues of CX3CR1–EGFP hetero knockin mice. Sequential images in the same visual field were acquired before intravenous injection of 3 mg/kg of the potent S1PR2 antagonist JTE013. CX3CR1–EGFP–positive cells can be seen in green and the microvasculature of BM tissues was visualized by intravenous injection of 70 kD dextran-conjugated Texas red (red). Bars, 50 µm. Playback speed is 600×.

Video 8. Intravital two-photon imaging of mouse skull bone tissues of CX3CR1–EGFP hetero knockin mice. Sequential images in the same visual field were acquired 2 h after intravenous injection of 3 mg/kg of the potent S1PR2 antagonist JTE013. CX3CR1–EGFP–positive cells can be seen in green and the microvasculature of BM tissues was visualized by intravenous injection of 70 kD dextran-conjugated Texas red (red). Bars, 50 µm. Playback speed is 600×.

Video 9. Intravital two-photon imaging (broad visual field) of mouse skull bone tissues of CX3CR1–EGFP heterozygous knockin mice. 2 h after intravenous injection of 3 mg/kg of the potent S1PR2 antagonist JTE013, CX3CR1–EGFP–positive cells, microvasculature (visualized by intravenous injection of 70 kD dextran-conjugated Texas red), and bone matrices (visualized using second harmonic imaging) were seen as green, red, and blue, respectively. Bars, 70 µm. Playback speed is 600×.