Asthma is a common and heterogeneous inflammatory disorder of the airways (Anderson, 2008). Studies of patients and animal models suggest that TH2 memory cells that reside in the lung during disease remission contribute to the persistence and progression of asthma (Robinson et al., 1992; Epstein, 2006). In the allergic form of asthma, repetitive exposure to allergens activates allergen-specific resident TH2 memory cells to trigger production of chemokines and proinflammatory cytokines and recruitment of other inflammatory leukocytes (Cohn et al., 2004). In addition to allergens, environmental factors or infectious pathogens often trigger epithelial stress and altered innate immunity that induce different types of inflammation, thereby resulting in the heterogeneous forms of asthma (Simpson et al., 2006; Holgate, 2007).

The inflammatory cytokine interleukin (IL)-17 is involved in the pathogenesis of allergic diseases. However, the identity and functions of IL-17–producing T cells during the pathogenesis of allergic diseases remain unclear. Here, we report a novel subset of TH2 memory/effector cells that coexpress the transcription factors GATA3 and RORγt and coproduce TH17 and TH2 cytokines. Classical TH2 memory/effector cells had the potential to produce IL-17 after stimulation with proinflammatory cytokines IL-1β, IL-6, and IL-21. The number of IL-17–producing TH2 cells was significantly increased in blood of patients with atopic asthma. In a mouse model of allergic lung diseases, IL-17–producing CD4+ T cells were induced in the inflamed lung and persisted as the dominant IL-17–producing T cell population during the chronic stage of asthma. Treating cultured bronchial epithelial cells with IL-17 plus TH2 cytokines induced strong up-regulation of chemokine eotaxin-3, IL8, Mip1β, and Groα gene expression. Compared with classical TH17 and TH2 cells, antigen–specific IL-17–producing TH2 cells induced a profound influx of heterogeneous inflammatory leukocytes and exacerbated asthma. Our findings highlight the plasticity of TH2 memory cells and suggest that IL-17–producing TH2 cells may represent the key pathogenic TH2 cells promoting the exacerbation of allergic asthma.
of the IL-17 cytokine family and the analysis of IL-23–mediated immune pathogenesis have led to the delineation of a new CD4+ T helper cell population termed T_{H}17 (Yao et al., 1995b; Aarvak et al., 1999; Cua et al., 2003; Murphy et al., 2003; Harrington et al., 2005; Park et al., 2005a). The retinoic acid–related orphan receptor (RORyt) is the master transcription factor for the development of T_{H}17 cell lineage, which can be characterized by their secretion of the proinflammatory cytokines IL-17, IL-17F, and IL-22 (Ivanov et al., 2006). Studies in vitro have observed that in the absence of IL-4 and IFN-γ, TGF-β, and IL-21 or IL-23 are important for the induction of RORyt expression, and that the proinflammatory cytokines IL-1β or IL-6 can trigger IL-17 cytokine production (Mangan et al., 2006; Veldhoen et al., 2006; Wilson et al., 2007; Manel et al., 2008; Volpe et al., 2008; Yang et al., 2008). During Th cell differentiation, transcription factors T-bet and GATA-3 are mutually inhibitory for T_{H}2 and T_{H}1 differentiation, respectively. Although T-bet is a negative regulator for T_{H}17 differentiation, enforced expression of GATA-3 does not restrain the differentiation of IL-17–producing T cells, despite the loss of T_{H}17-mediated pathology (van Humborg et al., 2008). Additionally, an indispensable transcription factor for T_{H}2 differentiation, IFN regulatory factor 4 (IRF4), is also required for T_{H}17 cell development, suggesting that plasticity between the development and maintenance of T_{H}2 and T_{H}17 cells may exist (Brüstle et al., 2007).

The discovery of IL-17–producing T cells has added an additional layer of complexity to the regulation of allergic inflammation. In asthmatic patients, IL-17 expression is increased in the lungs, sputum, bronchoalveolar lavage (BAL) fluids, or sera, and the severity of airway hypersensitivity in patients correlates with IL-17 expression level (Molet et al., 2001; Chakir et al., 2003). IL-17 and IL-17F can provoke neutrophil infiltration in mouse models of asthma in an antigen-specific fashion (Hellings et al., 2003), probably by inducing lung structural cells to secrete proinflammatory cytokines and chemokines such as TNF-αβ, G-CSF, and IL-6 and CXCL1/Groα, CXCL2, and CXCL8/IL-8, respectively (Jovanovic et al., 1998; Laan et al., 1999; Ye et al., 2001; Jones and Chan, 2002). Importantly, IL-17R–deficient mice exhibit both reduced neutrophil and eosinophil recruitments (Ye et al., 2001), whereas IL-17A−/− mice exhibited reduced neutrophil responses to antigen sensitization (Nakae et al., 2002). Although these studies demonstrate the importance of IL-17–producing cells in driving the exacerbation of allergic inflammation, the identity and characteristics of these cells during type-2–dominant immune response remain unclear. Herein, we demonstrate that a subset of T_{H}2 cells in both mice and humans is capable of producing large amounts of the proinflammatory cytokines IL-17 and IL-22, in addition to classical T_{H}2 cytokines. We suggest that IL-17–producing CD4+ T_{H}2 cells may be a unique subset of lung resident T_{H}2 memory/effector cells with additional inflammatory properties and contribute to the exacerbation of chronic allergic asthma.

RESULTS

A novel subset of human T_{H}2 memory/effector cells produces IL-17

CCR6 was a useful marker for the identification of IL-17–producing cells in the human memory T cell pool (Acosta-Rodriguez et al., 2007). CCRTH2 were reported to be the most reliable marker to identify human CD4+ T_{H}2 memory cells (Cosmi et al., 2000; Wang et al., 2006). The characterization of human CCRTH2+CD4+ T_{H}2 cells led us to identify a distinctive subset of T_{H}2 cells expressing a high level of CCR6 (Fig. 1 a). To investigate whether the CCR6+ subset of CCRTH2+CD4+ T_{H}2 cells also display features of T_{H}17 cells, freshly purified CCR6+ and CCR6− subsets of CCRTH2+CD4+ T_{H}2 cells from the peripheral blood were stimulated with anti-CD3/CD28 mAbs for 24 h, and their secreted cytokines were examined using ELISA. Both subsets of CCRTH2+CD4+ T_{H}2 cells produced classical T_{H}2 cytokines IL-4, IL-5, and IL-13, but not IFN-γ; notably, only the CCR6+ subset of T_{H}2 cells could produce T_{H}17 cytokines IL-17 and IL-22 (Fig. 1 b). Both subsets exhibit a memory T cell phenotype featuring the expression of CD45RO, CCR7, CD27, and CD62L, as well as CCR4 and CXCR4, the chemokine receptors expressed by T_{H}2 cells (Fig. 1 c and not depicted). Notably, both T_{H}2 cell subsets express low levels of surface IL-1RI, but do not express IL-23R; additionally, very few of them express CD161 (<2%), which is the marker of human T_{H}17 precursors (Fig. 1 c; Acosta-Rodriguez et al., 2007; Annunziato et al., 2007; Cosmi et al., 2008). These findings reveal a novel subset of human T_{H}2 cells that are capable of producing inflammatory IL-17 cytokine and expresses chemokine receptors for homing to the skin and other mucosal tissues.

Because RORyt expression is essential for the generation of the classical IL-17–producing CD4+ T cells (Ivanov et al., 2006), we analyzed the expression of RORyt transcript in the following cell populations: CCR6+CCRTH2+ IL-17–producing T_{H}2 cells, classical CCR6−CCRTH2+ T_{H}2 cells, CCR6−CCRTH2− T_{H}17 cells (Acosta-Rodriguez et al., 2007), in vitro-generated T_{H}1 cells, and CD4+CD45RO− naive T cells. Both T_{H}17 and IL-17–producing T_{H}2 cells were found to express a significant level of RORyt transcript; in contrast, classical T_{H}2, T_{H}1, or naive T cells did not (Fig. 1 d). Although both IL-17–producing T_{H}2 and classical T_{H}2 cells expressed the master transcription factor for T_{H}2 development, GATA3, these T_{H}2 cell subsets did not express T-bet, the transcription factor for T_{H}1 development (Fig. 1 d). These data demonstrate that CCR6+CCRTH2+ IL-17–producing T_{H}2 cells can concurrently express RORyt and GATA3, which are the master transcription factors for T_{H}17 cells and T_{H}2 cells, respectively.

To further test whether IL-17 and IL-4 are concomitantly produced at the single-cell level, IL-17–producing T_{H}2 cells, classical T_{H}2 cells, and T_{H}17 cells were isolated and maintained with homeostatic cytokines (IL-7 and IL-15) for 3 d before intracellular cytokine analyses. We found that a significant fraction of IL-17–producing T_{H}2 cells produced cytokines IL-4 and IL-17 concurrently, whereas classical T_{H}2 cells produced mostly IL-4, but little IL-17 (Fig. 2 a). Conversely, the classical T_{H}17 cells
produced mostly IL-17, but little IL-4 (Fig. 2a). To examine whether GATA3 and RORγt can be coexpressed at single-cell level, the three aforementioned T helper cell subsets were activated by anti-CD3 mAb before immunofluorescence analyses for expression of GATA3 and RORγt. Notably, IL-17–producing Th17 cells were found to coexpress GATA3 and RORγt in the nucleus (Fig. 2b–e). Corresponding to their cytokine production pattern, classical Th1 cells expressed only GATA3 and not RORγt (Fig. 2f), whereas classical Th17 cells expressed only RORγt and not GATA3 in their nucleus (Fig. 2g). These results demonstrate that IL-17–producing Th17 cells express both GATA3 and RORγt transcription factors.

Proinflammatory cytokines induce classical Th2 memory cells to produce IL-17

Several studies demonstrated that Th1-polarizing signals could reprogram committed Th2 memory/effector cells to produce IFN-γ, suggesting the existence of plasticity within committed Th2 cells (Brugnolo et al., 2003; Filì et al., 2006; Hegazy et al., 2010). To test whether classical Th17 cells have the potential to produce IL-17 cytokine under Th17-polarizing signals, purified classical CCR6−CRTH2+Th17 cells were cultured with homeostatic cytokines (IL-7 and IL-15) plus anti–IL-4 and anti–IFN-γ mAbs in the absence or presence of select Th17-polarizing cytokines for 6 d. As shown in Fig. 3a and b, we found that the Th17-polarizing cytokine IL-1β, IL-6, or IL-21, but not IL-23, is capable of inducing the classical Th17 cells to produce significant amounts of IL-17 as determined by ELISA and intracellular cytokine analyses. Notably, the treatment combination of IL-1β, IL-6, and IL-21 together is most effective at inducing the classical Th17 cells to produce IL-17 and IL-22 cytokines (Fig. 3, a and b), possibly via up-regulation of the expression of Th17-associated transcription factors IRF4 and RORγt, as well as CCR6 transcripts (Fig. 3c). Collectively, these results suggest that committed Th17 memory/effector cells possess the plasticity to become IL-17–producing cells after stimulation with proinflammatory cytokines.

IL-17 and Th17 cytokines synergistically induce chemokine production

Severe asthma is often associated with elevated IL-17 expression and intense infiltration of neutrophils and eosinophils in...
the airway of atopic patients (Kolls et al., 2003). To address whether the combination of IL-17 and T\(_{i2}\) cytokines can synergistically induce chemokine production, which would enhance the recruitment of inflammatory cells, we treated normal human bronchial epithelial cells or bronchial epithelial cell lines (BEAS-2) with various combinations of IL-17 and T\(_{i2}\) cytokines. Compared with the treatments of IL-13, TNF, IL-17, IL-13 with TNF, or IL-17 with TNF, the combination of IL-17, T\(_{i2}\) cytokines, and TNF induced the greatest increase in gene expression of eotaxin-3 (>500-fold), IL-8 (>200-fold), MIP-1\(\beta\) (>40-fold), and Gro-\(\alpha\) (>15-fold), but not MCP-1 or eotaxin-1, in the normal human bronchial epithelial cells and bronchial epithelial cell lines (BEAS-2; Fig. 4 a and not depicted). In a parallel experiment, we examined the effect of supernatants collected from activated IL-17–producing CD4\(^+\)CR6\(^-\)CRTH2\(^+\) T\(_{i2}\) cells, classical CD4\(^+\)CR6\(^-\)CRTH2\(^+\) T\(_{i2}\) cells, or CD4\(^+\)CR6\(^-\)CRTH2\(^-\) T\(_{i1}\) cells on the induction of chemokine gene expression in normal human bronchial epithelial cells. Compared with the supernatants collected from activated classical T\(_{i2}\) or T\(_{i1}\) cells, we found that the cytokine milieu secreted by IL-17–producing T\(_{i2}\) cells was the most effective in inducing the up-regulation of eotaxin-3 (>1,000-fold), IL-8 (>30-fold), Gro-\(\alpha\) (>12-fold), MCP-1 (>20-fold), and MIP-1\(\beta\) (>10-fold), but not eotaxin-1 gene expression in normal bronchial epithelial cells (Fig. 4 b). Notably, neutralizing anti–IL-17 mAbs can block the up-regulation of select chemokine genes induced by treatment with supernatant from IL-17–producing T\(_{i2}\) cells (Fig. 4 b). These results suggest that the IL-17 and TH2 cytokines produced concurrently by IL-17–producing TH2 cells can selectively enhance the expression of pro-allergic chemokine genes in lung epithelial cells, particularly eotaxin-3.

Increased frequency of IL-17–producing T\(_{i2}\) cells in patients with atopic asthma

Previous studies have showed that CRTH2\(^+\)CD4\(^+\) T\(_{i2}\) cells circulate in the peripheral blood of all healthy subjects tested, ranging from 2—4% of total CD4\(^+\) T cells, and that the frequency of these cells is elevated in patients with atopic dermatitis (Cosmi et al., 2000). To examine whether an increased frequency of circulating IL-17–producing T\(_{i2}\) cells is associated with patients with atopic asthma, 39 subjects were recruited for the study (23 subjects with atopic asthma and 16 healthy control subjects). Subject characteristics are summarized in Table I. The number of total CD4\(^+\)CRTH2\(^+\) T\(_{i2}\) memory/effector cells and of CCR6\(^+\) and CCR6\(^-\) of CD4\(^+\)CRTH2\(^+\) T\(_{i2}\) cell subset cells from the peripheral blood of subjects were analyzed and compared by flow cytometry. Consistent with a previous study (Cosmi et al., 2000), the number of circulating total CD4\(^+\)CRTH2\(^+\) T\(_{i2}\) memory/effector cells in subjects with...
suggest that patients with atopic asthma may have increased frequency of inflammatory IL-17–producing TH2 cells in their blood.

IL-17–producing TH2 cells are induced in inflamed lung in vivo

To further establish the function of IL-17–producing TH2 cells in the pathogenesis of asthma in vivo, we used a previously described mouse model of allergic lung diseases by challenging IL-4-eGFP knock-in (4GET) mice six times intranasally with *Aspergillus oryzae* or papain (Henderson et al., 1996). 1 d after the last challenge, CD4+CD62L–CD44hi memory/effector T cells isolated from lung or other lymphoid tissues were stimulated with PMA and ionomycin for intracellular cytokine analyses. As shown in Fig. 6 a, two populations of the infiltrating CD4+ cells...
inflamed lung, but not other lymphoid organs, produced large amounts of IL-17A, IL-17F, IL-22, IL-21, and IFN-γ, but very little of IL-4, IL-5, and IL-13, indicative of the classical TH17 or TH1 cell subsets (Fig. 6 b). These data suggest that the IL-17/IL-4–double-producing TH2 cells were induced selectively in inflamed lung, but not in the draining lymph nodes or other lymphoid tissues in this mouse model of asthma.

IL-7–producing TH2 cells are increased in inflamed lung during chronic phase

Allergen-specific TH2 memory cells that reside in lung during disease remission are the principle cell type responsible for the exacerbation of allergic asthma (Epstein, 2006). To characterize lung-resident memory T cells after remission, we analyzed intracellular cytokine production by CD4+CD62L− memory/effector T cells in the lung and other lymphoid tissues from mice that rested for different periods of time after the last allergen challenge. 3 h after the last challenge, the majority of lung CD4+CD62L− memory/effector T cells were found to be the conventional IL-17+IL-4− (GFP−) TH17 cells (20%) or the classical IL-17−IL-4+ (GFP+) TH2 cells (16%); only 3% of lung memory/effector CD4+ T cells were IL-17−producing TH2 cells (IL-17+GFP+; Fig. 7 a). Notably, the frequency of conventional TH17 cells that reside in the lung declined rapidly to <10% 1 d after the last challenge. Conversely, the frequency of the IL-17−producing TH2 cells accumulated to >20% of total lung resident CD4+CD62L− memory/effector T cells in mice that rested for

Table 1. Characteristics of the study population

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Atopic asthma subjects</th>
<th>Healthy control subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 23</td>
<td>n = 16</td>
</tr>
<tr>
<td>Age, yr</td>
<td>50 (27–65)</td>
<td>34 (24–46)</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>9/14</td>
<td>10/7</td>
</tr>
<tr>
<td>Onset of asthma (childhood/adulthood)</td>
<td>8/17</td>
<td>–</td>
</tr>
<tr>
<td>FEV1, percentage predicted</td>
<td>68 (31–98)</td>
<td>107 (102–121)</td>
</tr>
<tr>
<td>Percentage of PEF variability</td>
<td>20 (12–69)</td>
<td>ND</td>
</tr>
<tr>
<td>Skin test positive</td>
<td>23 (100%)</td>
<td>ND</td>
</tr>
</tbody>
</table>

Data are presented as median with interquartile ranges. FEV1, forced expiratory volume in the first second; PEF, peak expiratory flow; ND, not done.
IL-17–producing T\(_{i17}\) cells exacerbate allergic inflammation

Because the expression level of IL-17 is associated with the severity of asthma in patients (Molet et al., 2001; Chakir et al., 2003), we assessed the relative roles of the classical T\(_{i17}\), classical T\(_{i2}\), and IL-17–producing T\(_{i17}\) cells in the pathogenesis of allergic asthma. To generate OVA-specific IL-17–producing T\(_{i17}\) or classical T\(_{i2}\) cells, splenic CD4\(^+\) T\(_{i17}\) cells were first isolated from OVA/alum adjuvant–sensitized 4GET mice carrying OVA-specific DO11.10 TCR transgene (DO11.10X4GET). OVA-specific IL-17–producing T\(_{i17}\) cells were then further induced by co-culturing splenic CD4\(^+\) T\(_{i17}\) cells with APCs pulsed with OVA peptides in the presence of IL-1\(\beta\), IL-6, IL-23, and anti–IFN-\(\gamma\) or IL-4 and anti–IFN-\(\gamma\), respectively. OVA-specific T\(_{i17}\) cells were generated by co-culturing splenic CD4\(^+\) T cells from naive DO11.10X4GET mice with APC pulsed with OVA peptides in T\(_{i17}\)-polarizing conditions. BALB/c mice were transferred intravenously with a single OVA-specific, IL-17–producing T\(_{i17}\), classical T\(_{i2}\), or T\(_{i17}\) cell subset, with both the classical T\(_{i17}\) and T\(_{i17}\) cell subsets, or with saline alone; mice were then challenged with OVA intranasally once a day for 2 d. As shown in Fig. 8 a, bronchoalveolar lavage fluid (BALF) from mice transferred with OVA-specific, IL-17–producing T\(_{i17}\) cells or both the classical T\(_{i17}\) and T\(_{i17}\) cell subsets contained about threefold more infiltrating cells than those from mice transferred with only OVA-specific classical T\(_{i17}\) or T\(_{i17}\) cells alone. Moreover, we found that mice transferred with OVA-specific IL-17–producing T\(_{i17}\) cells or both the classical T\(_{i17}\) and T\(_{i17}\) cell subsets exhibited markedly enhanced recruitments of eosinophils, neutrophils, macrophage, and lymphocytes into the airway, whereas mice transferred with only OVA-specific classical T\(_{i17}\) or T\(_{i17}\) cells showed a moderate influx of eosinophils or neutrophils and macrophages into the airway, respectively, after intranasal OVA challenges (Fig. 8 b). Interestingly, a significant increase of inflammatory cytokines, IL-18 and IL-6, and a moderate increase of IL-5 and IL-13, but not IFN-\(\gamma\) production, were detected in the BALF of mice transferred with OVA-specific, IL-17–producing T\(_{i17}\) cells or both the classical T\(_{i17}\) and T\(_{i17}\) cell subsets compared with those in BALF of mice transferred with OVA-specific classical T\(_{i17}\) or T\(_{i17}\) cells or saline only (Fig. 8 c). Histological analyses of lungs from mice transferred with OVA-specific, IL-17–producing T\(_{i17}\) cells or both the classical T\(_{i17}\) and T\(_{i17}\) cell subsets exhibited markedly enhanced peribronchial inflammation with infiltrated eosinophils and neutrophils, more prominent mucin production, and goblet cell hyperplasia compared with lungs from mice transferred with conventional T\(_{i17}\) or T\(_{i17}\) cells or saline only (Fig. 8 d). These results suggest that during the allergen recall response, antigen–specific IL-17–producing T\(_{i17}\) cells may have additional inflammatory properties, similar to those of the combined T\(_{i17}\) and T\(_{i17}\) cells, which promote the infiltration of heterogeneous leukocytes and exacerbate the immunopathology of allergic asthma.

DISCUSSION

Severe asthma is a heterogeneous disorder with distinct types of inflammatory processes. Although the discovery of IL-17–producing T cells has shed light on the understanding of the underlying mechanisms that contribute to the heterogeneity and severity of asthma, the identity of IL-17–producing T cells in allergic diseases, including asthma remain elusive. In this study, we identified a distinct population of human IL-17–producing T\(_{i17}\) cells characterized by (a) the capability of concomitantly producing the classical T\(_{i2}\) cytokines IL-4, IL-5, and IL-13, and the inflammatory T\(_{i17}\) cytokines IL-17 and IL-22; (b) dual expression of the T\(_{i17}\)-transcription factor ROR\(\gamma\)t and the T\(_{i2}\)-transcription factor GATA3; and
Figure 6. The induction of IL-17-producing Th2 cells occurred in the inflamed lung after allergen exposure. 4GET mice (n = 4) were challenged with indicated allergens plus OVA intranasally every other day for a total of six times before sacrifice. Sorted total (a) or GFP+ and GFP- subsets (b) of CD4+CD62L-CD44hi memory/effector T cells from lung or indicated lymphoid tissues were restimulated with PMA plus ionomycin for the analysis of intracellular cytokine production (a) or with anti-CD3/CD28 mAbs for 24 h before measurement of cytokines in the supernatants by ELISA (b). Data are from one of three independent experiments (a and b). Data represented as the mean (±SD); four mice per group. LLN, lung draining LNs; MLN, intestine mesenteric LNs.

Figure 7. Inflammatory IL-17-producing Th2 cells persist in the inflamed lung during the chronic phase of allergic asthma. 4GET mice (n = 4) were challenged with Aspergillus Orazae plus OVA intranasally every other day for a total of six times (a and b). After the last challenge, mice rested for the indicated time frame (a and b; horizontal axis) before sacrifice. Purified CD4+CD62L-CD44hi memory/effector T cells from lung or other lymphoid tissues were restimulated with PMA plus ionomycin for the analysis of intracellular cytokine production (a). The percentage of indicated cytokine producing cells within the total CD4+ memory/effector T cell pool were numerated as shown on the left axis (b). Data are representative of two independent experiments. Data represented as the mean (±SD); four mice per group.
that the TGF-β, IL-21, or IL-23, as well as the proinflammatory cytokines IL-1β or IL-6, are important for the induction of IL-17 cytokine production (Mangan et al., 2006; Veldhoen et al., 2006; Wilson et al., 2007; Manel et al., 2008; Volpe et al., 2008; Yang et al., 2008). However, recent findings suggest that some cytokines, such as IL-1β (Tillie-Leblond et al., 1999; Nakae et al., 2003; Chung et al., 2009) and IL-21 (Fröhlich et al., 2007; Nurieva et al., 2007; Leonard et al., 2008; Yang et al., 2008), and the transcription factor IRF4 (Rengarajan et al., 2002; Brüstle et al., 2007; Honma et al., 2008) are important for the development of both TH2 and TH17 immune responses, suggesting that the plasticity between the development and maintenance of TH2 and TH17 cells may exist. Our finding of the novel subset of CD4+ TH2 memory/effector cells capable of producing IL-17 supports this hypothesis. Notably, we showed that the proinflammatory cytokine IL-1β, IL-6, and IL-21 could directly induce the up-regulation of IRF4 and RORγt gene expression and the production of IL-17 in classical TH2 memory/effector cells in vitro. At the early phase of allergic inflammation in an

Figure 8. Antigen-specific inflammatory IL-17–producing T H2 cells promote the exacerbation of allergic asthma. Five groups of BALB/c mice were intranasally challenged once a day for 2 d with OVA 24 h after being adoptive transferred with 0.9% saline as a control or OVA-specific IL-17–producing T H2, classical T H2, classical T H17, or classical T H2 and T H17 cells generated in vitro, as described in Materials and methods. BALF of individual mice of each group were collected for the measurement of total cell counts (a) and differential cell counts (b), indicating that the total numbers of individual inflammatory cells in each group or (c) concentrations of indicated cytokines by ELISA. (d) Histological analysis of representative lung bronchovascular bundles stained with hematoxylin and eosin (H&E; top) or stained with periodic acid Schiff (PAS; bottom). The insets at the corner depict higher magnification images of the airway epithelium stained with PAS, showing that much more abundant mucus-producing cells (pink cytoplasm) are lining the airway epithelium of mice receiving indicated T helper cell subsets. Data are representative of three independent experiments. Data represented as the mean (±SD); four mice per group. Bars: (capped) 100 µm; (uncapped) 10 µm.
animal model of allergic lung diseases, IL-17–producing T\textsubscript{H}17 cells could primarily be found in the inflamed lung along with other T helper subsets, including classical T\textsubscript{H}2 and T\textsubscript{H}17 cells, and some T\textsubscript{H}1 cells. Notably, these resident IL-17–producing T\textsubscript{H}2 cells persist in inflamed lung as the dominant IL-17–producing T cells at the chronic stage of airway allergic inflammation. Collectively, these observations suggest that substantial plasticity exists within CD4+ T\textsubscript{H}2 memory/effector cells and that this plasticity may be controlled by local inflammatory cues. In theory, naïve CD4+ T cells or T\textsubscript{H}17 cells may also have the potential to become IL-4/IL-17–dual-producing cells. It is possible that some naïve T cells may not have to undergo the T\textsubscript{H}2 or T\textsubscript{H}17 differentiation pathway and may become IL-4/IL-17 double producers through subsequent regulation from unique microenvironments in vivo. Recent studies have reported that T\textsubscript{H}17 cells have the plasticity to become other cell lineages (Lee et al., 2009; Zhu and Paul, 2010). To test whether T\textsubscript{H}12-polarizing signals could induce T\textsubscript{H}17 cells to become IL-4/IL-17 double producers, in our pilot studies, we found that T\textsubscript{H}12-polarizing stimuli (thymic stroma lymphopoietin–activated DCs or IL-4) could induce the freshly isolated human CCR6+CRTH2+ T\textsubscript{H}17 cells to produce IL-4, but shut down their IL-17 production in vitro (unpublished data). However, during the revision of this study, findings from the characterizations of human CD4 T cell clones point to the possibility that T\textsubscript{H}17 cells may have the potential to become IL-4/IL-17 dual-producing cells (Cosmi et al., 2010). Understanding the cellular origin and the underlying mechanisms that drive the induction of IL-4/IL-17 double producers during allergic inflammation is the basis for further investigations.

The severity of asthma is correlated with the level of IL-17 cytokine found in the lung, sputum, BALF, or serum of patients (Molet et al., 2001; Chakir et al., 2003). One of the major functions of the cytokine IL-17 during asthmatic reactions is to orchestrate the sustained neutrophilic mobilization (Kolls et al., 2003; Lindén et al., 2005). However, the mixed eosinophilic, neutrophilic, and granulocytic infiltrations with greatly increased total cell number are often observed in the sputum of patients in some subtypes of severe allergic asthma (Simpson et al., 2006), and the underlying cellular and molecular mechanisms remain unknown. One of the mechanisms involved in the IL-13–mediated pathophysiological features of asthma is the induction of chemokine production by airway structural cells (Zimmermann et al., 2003). We found that the combination of inflammatory IL-17 and T\textsubscript{H}17 cytokines IL-4 and IL-13 or the use of a cytokine milieu produced by IL-17–producing T\textsubscript{H}17 cells have profound synergistic effects on the induction of various chemokine genes in primary lung bronchial epithelial cells, such as MIP-1\textbeta, MCP-1, Gro-\alpha, IL-8, and eotaxin-3, which is particularly effected. The effects of IL-17–producing T\textsubscript{H}17 cells on promoting the recruitment of inflammatory leukocytes were further substantiated in this animal model of asthma in vivo. Transfer of antigen–specific, IL-17–producing T\textsubscript{H}17 cells triggered much stronger influx of heterogeneous leukocytes, including neutrophils, eosinophils, macrophage, and lymphocytes, which resulted in profound goblet hyperplasia as well as elevated mucin production after antigen sensitization.

In contrast, mice transferred with conventional T\textsubscript{H}2 or T\textsubscript{H}17 cells exhibited fewer airway infiltrations of eosinophils or neutrophils, respectively, and limited pathophysiological features. The finding that the frequency of circulated IL-17–producing T\textsubscript{H}17 cells is significantly elevated in atopic asthma patients further highlights the potential role of this novel cell subset in the exacerbation of allergic diseases. Future analyses on the frequency and characteristics of the inflammatory IL-17–producing T\textsubscript{H}17 cells in patients with different subtypes of asthma may facilitate the understanding of the heterogeneity and severity of allergic asthma.

Patients with severe allergic asthma during remission often have elevated nitric oxide breath levels that are indicative of their persistent lung inflammation and are possibly mediated by resident allergen–specific T\textsubscript{H}2 memory cells (Yurovsky et al., 1998; Bates and Silkoff, 2003). The identification of the T\textsubscript{H}17 cell lineage and its confounding roles in the pathogenesis of allergic inflammation have further unveiled the complexity of atopy (Nakae et al., 2002; Schnyder–Candrian et al., 2006) and raises new questions on how T\textsubscript{H}17 cells and T\textsubscript{H}2 cells cooperate to mediate the severity and heterogeneity of allergic asthma. The temporal recruitments and interplay between these two T helper subsets have been suggested as the cause of the heterogeneity in the pathology of severe asthma (Larché et al., 2003; Schmidt-Weber et al., 2007). In an animal model of asthma, we showed that the influx of T\textsubscript{H}17 cells could occur within the first 3 h after the last challenge; however, the majority of IL-17–producing T cells persisted in the lung from day 3 after the last challenge and were found to express low–to–high levels of GFP (IL-4) that were indicative of their T\textsubscript{H}17 characteristics. Our findings suggest that the rapid influx of T\textsubscript{H}17 cells may be part of the inflammatory processes triggered by the injured epithelial cells or altered innate immunity induced by environmental stimuli or invaded pathogens at the acute phase of allergic asthma. Antigen–specific classical T\textsubscript{H}2 or IL-17–producing T\textsubscript{H}17 cells that respond to allergen sensitization may reside in the lung and contribute to the persistence and progression of chronic allergic asthma. Designing curative therapy for chronic allergic diseases in a phase–specific manner may require not only the understanding of the factors that regulate the balance for the development of various T helper subsets, but also their temporal sequences and potential interactions in the induction of immunopathology of allergic asthma.

MATERIALS AND METHODS

Cell culture and isolation of human T\textsubscript{H}2 and T\textsubscript{H}17 memory cell subsets. This study was approved by the institutional review board for human research at The University of Texas M.D. Anderson Cancer Center (Houston, Texas). Human CD4+ T\textsubscript{H}2 memory/effector T cells were enriched by the depletion of other lineage cells using microbeads and then sorted as CD4+CRTH2+CCR6–Lineage– or CD4+CRTH2–CCR6+Lineage– cells. T\textsubscript{H}17 cells were sorted as CD4+CRTH2–CCR6+Lineage+ cells with purity >99%, as previously described (Wang et al., 2006). In some experiments,
purified CD4+CD24-CD304-CCR6+ \(\text{T}_{\text{H}}2 \) cells were cultured with 20 ng/ml IL-7 and 10 ng/ml IL-15 plus 2 µg/ml anti-IL-4 and 1 µg/ml anti-IFN-\(\gamma \) mAbs (R&D Systems) in the presence or absence of 10 ng/ml IL-1\(\beta \), 25 ng/ml IL-6, 10 ng/ml IL-21, or 25 ng/ml IL-23 (R&D Systems), or in the combination of these cytokines for the induction of IL-17 production. Human primary normal bronchial epithelial cells (Lonza) were maintained in bronchial epithelial growth medium (Lonza), and the bronchial epithelial cell line (BEAS-2) was cultured following the instructions of American Type Culture Collection.

Analysis of cytokine production

Freshly isolated or expanded human \(\text{T}_{\text{H}}2 \) cell subsets or \(\text{T}_{\text{H}}17 \) cells were stimulated with immobilized anti-CD3 (OKT3; 5 µg/ml) and soluble anti-CD28 (BD) in mouse experiments, or gotth’s GFP or GFP+ CD4+CD62L+ memory/effector T cells, isolated from 4GET mice challenged intranasally with the allergen *Aspergillus oryzae* 6 times were stimulated with immobilized 5 µg/ml anti-CD3 and soluble 1 µg/ml anti-CD28 for 24 h. Collect supernatants were assessed by ELISA for IL-4, IL-5, IL-17, IL-22, IFN-\(\gamma \), IL-10, and TNF production (R&D Systems). In mouse experiments, sorted GFP+ or GFP+ CD4+CD62L+ memory/effector T cells, isolated from 4GET mice challenged intranasally with the allergen *Aspergillus oryzae* 6 times were stimulated with immobilized 5 µg/ml anti-CD3 and soluble 1 µg/ml anti-CD28 for 24 h. Collect supernatants were assessed by ELISA for IL-4, IL-5, IL-17, IL-22, IFN-\(\gamma \), IL-10, and TNF production (R&D Systems), and IL-22 production (Antigenic American). Intracellular cytokine analyses were performed using PE-IL-4, FITC-IFN-\(\gamma \) (BD), and APC-IL-17 (eBioscience) in human studies and PE-IL-17 (eBioscience) and APC-IFN-\(\gamma \) mAb in mouse experiments.

RNA isolation and real-time quantitative PCR

Total RNA samples were isolated from sorted or cultured cells were isolated by RNeasy kit (QIAGEN). The cDNA templates were synthesized using SuperScript II (Life Technologies). For the analysis of GATA3, c-maf, T-bet, NFATc1, IL-4, and IL-5 gene expression, real-time PCR probes were purchased directly from the manufacturer (Applied Biosystems). For analyses of chemokine gene expression, transcripts were amplified using an annealing temperature of 60°C and the following primers: CXCL1/1-Gco-a, 5'-AGGGAATTCGACAGGTCCAGCCGCACTATCG-3', and 5'-GATGCAAGGATTGAGAGAGGCTAAGGCTGATG-3', and 5'-TATGCACTGACATCTAATGGTCTTTAAGGAC-3', and 5'-CTGCGTGCGAAGCTATGAGT-3', and 5'-TCTCTTCCTGCTCTTGGTAGTGAACC-3', and CCL3/3-MIP-a, 5'-CAACCTCCGGCCAGATTTCC-3', and 5'-GCCGGCTTCGTCTTTGTTA-3'. For each sample, mRNA abundance was normalized to the amount of 18S rRNA or GAPDH and expressed as arbitrary units, as described previously (Wang et al., 2006).

Immunohistology

For immunofluorescent staining, cultured human T helper subset cells were activated by anti-CD3 for 6 h before being cytospun onto the slides. The tested slides were fixed and incubated with goat anti-GATA3 (Santa Cruz Biotechnology, Inc.) and mouse anti-human ROR\(\gamma \) mAb (provided by D. Littman, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY) at room temperature for 1 h, followed by Alexa Fluor 488-F(ab')2 fragment rabbit anti-goat IgG antibody (Invitrogen). After washing and blocking, cells were counterstained with biotinylated horse anti-mouse antibodies and visualized by Alexa Fluor 594-conjugated streptavidin (Invitrogen).

Induction and analysis of a mouse model of allergic lung diseases

We used a previously well-established animal model of allergen-induced airway disease (Henderson et al., 1996). In brief, 4GET or DO11.10X4GET mice were anesthetized with isofluorane and subjected to intranasal inhalation of 50 µl of OVA only, *Aspergillus oryzae* with OVA, or Papan with OVA every other day for a total of 6 challenges. Potential endotoxin contamination was removed from OVA by endotoxin-removing gel (Thermo Fisher Scientific). After the last challenge, mice were sacrificed at various time points and CD4+CD62L+ memory/effector T cells were sorted from the lung, spleen, lung draining lymph nodes, and mesenteric lymph nodes.

Purified T cells were analyzed for cytokine production by intracellular cytokine staining or ELISA as described above.

Generation of OVA-specific \(\text{T}_{\text{H}}2 \) subsets

For the generation of OVA-specific \(\text{T}_{\text{H}}2 \) cells, CD4+ T cells were obtained from splenocytes of naive DO11.10X4GET mice, enriched by magnetic anti-CD4 microbeads, and then cultured with irradiated CD4+ spleen cells pulsed with OVA 323–339 peptide in the presence of 5 ng/ml TGF-\(\beta \) (Peprotech), 20 ng/ml IL-6 (Peprotech), 10 µg/ml IL-23 (R&D systems), 20 µg/ml anti-IL-4 mAb (BD), and 20 µg/ml anti-IFN-\(\gamma \) mAb (BD). For the generation of OVA-specific \(\text{T}_{\text{H}}2 \) subsets, DO11.10X4GET mice were first immunized intraperitoneally with 100 µg of OVA in 2 mg of aluminum hydroxide (Thermo Fisher Scientific). OVA-specific IL-17-producing \(\text{T}_{\text{H}}2 \) cells or conventional \(\text{T}_{\text{H}}2 \) cells were then generated from enriched CD4+ T cells cultured with irradiated CD4+ spleen cells pulsed with OVA323-339 peptide in the presence of 20 ng/ml IL-1\(\beta \) (R&D systems), 20 ng/ml IL-6, and 10 µg/ml IL-23 plus 20 µg/ml anti-IFN-\(\gamma \) mAbs or 10 ng/ml IL-4 (Peprotech) and 20 µg/ml anti-IFN-\(\gamma \) mAb, respectively.

Adoptive transfer experiments for antigen-induced airway inflammation

The IL-17-producing \(\text{T}_{\text{H}}2 \) cells, conventional \(\text{T}_{\text{H}}2 \) cells, or \(\text{T}_{\text{H}}17 \) cells were transferred intravenously into BALB/c mice (2 \(\times \) 106 cells/mouse). Control mice received saline intravenously. 1 d after transfer, mice were intranasally challenged with OVA (50 µg/ml) every day for a total of two times. Mice were sacrificed 24 h after the last challenge. Total cell numbers or numbers of eosinophils, neutrophils, macrophage, and lymphocytes in the BALF were enumerated, and the levels of IL-1\(\beta \), IL-6, IL-10, IL-17, and IFN-\(\gamma \) in the BALF were evaluated by ELISA. For the histological analyses, individual lung slices were fixed in 10% buffer formalin. Hematoxylin and eosin, Giemsa, and periodic-acid Schiff staining were performed by Histology Consultation Services, Inc.

Subjects and study design

Study participants were recruited from patients diagnosed in the Bernstein Allergy Group, and the Clinical Research Center in the Division of Allergy and Immunology at the University of Cincinnati. The study was approved by the University of Cincinnati Institutional Review Board. Patients taking any oral topical skin medication were excluded from the study. Exclusion criteria include: (a) having had an acute viral infection within at least 1 mo before the study; (b) being a smoker or ex-smoker who has had 20 pack per year smoking history; (c) having any unstable chronic disease (other than asthma), or (d) being pregnant. Inclusion criteria were as follows: (a) age 18–65 yr; (b) history of allergic asthma lasting for 1 yr or longer based on previous diagnosis in our clinics; (c) positive skin prick tests (wheat diameter >5 mm) to one or more of the following allergens: timothy grass pollen, ragweed, cockroach, molds, house dust mite, or cat dander in the presence of positive histamine and negative vehicle control; (d) receiving inhaled corticosteroids with or without other medications for asthma, including \(\beta_2 \)-agonists; leukotriene modifying agents or sustained release theophylline for at least 2 mo. All asthmatic subjects must have a ≥21% improvement in forced expiratory volume in the first second of exhalation (FEV1) or a fall of >20% or more in response to a provocative methacholine dose ≤10mg/ml, confirming airway hyperresponsiveness. All subjects underwent a thorough history (including an asthma control test), physical examination, weight to determine body mass index, and allergy skin prick testing. Atopy is defined by one or more positive skin prick tests to at least one common inhalant allergen.

Statistical analysis

Data were analyzed using GraphPad Prism 5 software. Data are presented as mean value ± SD and analyzed using Student’s t test (n = 2 groups). P values of <0.05 were considered significant.

We thank Dr. Marc E. Rothenberg for critically reading the manuscript and discussions; Dr. Dan Littman for providing anti-human ROR\(\gamma \) mAb; Dr. David Corry for suggestions; Karen Ramirez and Zhiwei He for cell sorting assistance; and Shawn Hottinger for editorial assistance.
This work was supported by the National Institute of Allergy and Infectious Disease grants to Y.-J. Lu (R01 AI061645-01 and U19 AI07130-01) and Y.-H. Wang (R01 AI091029-01), the Dana Foundation (Y.-J. Lu), the Sandler Foundation (Y.-J. Lu), and American Lung Association and American Academy of Asthma, Allergy, and Immunology Foundation (Y.-H. Wang). The authors have no conflicting financial interests.

Submitted: 7 July 2010
Accepted: 1 September 2010

REFERENCES

