CICATRIZATI'ON OF WOUNDS.

V. NEW MATHEMATICAL EXPRESSION OF CICATRIZATION.

BY A. JAUBERT DE BEAUJEU, M.D.

(From the Laboratories of The Rockefeller Institute for Medical Research, New York, and Hospital 21, Compiègne, France.)

(Received for publication, November 24, 1916.)

A new formula with two equations gives in mathematical terms Carrel and Hartmann's law:1 "the rate of cicatrization diminishes at the same time as the size but less rapidly."

In the time dt, the area cicatrized, dS, is proportional to S:

$$\frac{dS}{S} = -\lambda \ dt \quad \text{or} \quad \frac{dS}{dt} = -\lambda S$$

λ is positive and the formula shows that the rate, $\frac{dS}{dt}$, decreases with S.

By integration we get

$$\int \frac{dS}{S} = -\lambda \int dt$$

(1) \hspace{1cm} \log S = -\lambda t + \log S_0 \quad \text{or} \quad S = S_0 e^{-\lambda t}$

where S_0 is the initial area.

If the coefficient λ is constant, the law of cicatrization can be expressed by simple logarithmic formula.

The rate of cicatrization decreases less rapidly than the size; that is, λ is not constant and must increase slightly when the area decreases. In the time dt the variation of λ, $d\lambda$, is proportional to λ:

$$d\lambda = \mu \lambda dt \quad \text{or} \quad \frac{d\lambda}{dt} = \mu \lambda$$

If μ is positive, the equation indicates that λ increases because the derivative $\frac{d\lambda}{dt}$ is positive.

By integration we get
\[\int \frac{d\lambda}{\lambda} = \mu \int dt \]
(2) \[\log \lambda = \mu t + \log \lambda_0 \quad \text{or} \quad \lambda = \lambda_0 e^{\mu t} \]

where \(\lambda_0 \) is the initial value of \(\lambda \). \(\lambda \) is calculated by equation (2) and with this value of \(\lambda \) we can obtain \(S \) by the equation (1).

The two coefficients \(\lambda_0 \) and \(\mu \) may be determined to make the values calculated and observed correspond.

The area at any time can be obtained immediately without calculating the intermediate areas.