The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development

Yong Yu,1 Cui Wang,1,2 Simon Clare,1 Juexuan Wang,1 Song-Choon Lee,1 Cordelia Brandt,1 Shannon Burke,1 Liming Lu,1,4 Daqian He,2 Nancy A. Jenkins,3 Neal G. Copeland,3 Gordon Dougan,1 and Pentao Liu1

1Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
2Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
3The Methodist Hospital Research Institute, Houston, TX 77030
4Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Group 2 innate lymphoid cells (ILCs), or ILC2s, are a subset of recently identified ILCs, which play important roles in innate immunity by producing type 2 effector cytokines. Several transcription factors have been found to have critical functions in the development of both ILC2s and T cells. We report here that Bcl11b, a transcription factor essential in T cell lineage commitment and maintenance, is specifically expressed in progenitors committed to the ILC2 lineage and is required for ILC2 development. The Bcl11b gene is expressed in ~28% of ILC progenitors (ILCPs; common helper innate lymphoid progenitors or ILCPs expressing either ID2 or promyelocytic leukemia zinc finger, respectively). Both in vitro and in vivo, these Bcl11b-expressing early ILCPs generate only ILC2s. Inactivation of Bcl11b causes a complete loss of ILC2 development from hematopoietic progenitors, which is confirmed upon immune challenge with either papain administration or influenza virus infection.

Innate lymphoid cells (ILCs) are important effectors in innate immunity, lymphoid tissue formation, and tissue homeostasis. ILCs are characterized by a lymphoid morphology and the absence of markers for T, B, or myeloid cells and express the IL-7 receptor (IL-7Rα; CD127; Spits et al., 2013; Yagi et al., 2014). ILCs can be divided into ILC1s, ILC2s, and ILC3s based on the effector cytokines produced and the key transcription factors that determine their development and functions (Spits et al., 2013). For example, similar to Th2 cells, group 2 ILCs (ILC2s) produce IL-5 and IL-13 and are found to mediate parasite expulsion, to contribute to regeneration of respiratory tissues after acute influenza virus infection, and to participate in airway inflammation and immune pathologies (Moro et al., 2010; Neill et al., 2010; Price et al., 2010; Chang et al., 2011; Monticelli et al., 2011). All known subsets of ILCs depend on ID2 and cytokine receptor common γ chain for their development (Cao et al., 1995; Yokota et al., 1999; Moro et al., 2010). Transcription factors Rora, Gata3, Tcfl, Nfil3, and Gfi1 have been recently demonstrated to control ILC2 development (Kashiwada et al., 2011; Halim et al., 2012b; Hoyler et al., 2012; Mjösberg et al., 2012; Wong et al., 2012; Klein Wolterink et al., 2013; Spooner et al., 2013; Yang et al., 2013; Geiger et al., 2014; Seillet et al., 2014), and most of them have important roles in T cell development. ILCs are developed from common lymphoid progenitors (CLPs) and early ILC progenitors (ILCPs; Spits et al., 2013). However, it remains unclear how early progenitors become committed to each ILC subset and which transcription factors are involved in this process.

Transcription factor Bcl11b (B cell leukemia/lymphoma 11b) is required for the early T cell progenitors to become committed to the T cell lineage. Inactivation of the Bcl11b gene in the mouse causes failure of T cell lineage commitment and...
RESULTS AND DISCUSSION

Bcl11b is specifically expressed in ILC2s

We previously reported that Bcl11b is expressed in all T cells, from DN2 thymocytes to mature T cells, using the Bcl11b^{TdT} reporter mouse (Li et al., 2010a,b; Avram and Califano, 2014). Two studies indicate that Bcl11b expression was detected in ILC2s (Wong et al., 2012; Yang et al., 2013). We thus systematically investigated Bcl11b gene expression in ILCs in a Bcl11b reporter mouse and identified the essential role of Bcl11b in the development of ILC2s from hematopoietic progenitors.

Figure 1. The Bcl11b gene is specifically expressed in ILC2s in ILCs. (A) Flow cytometry was performed on ILC subsets to assess Bcl11b expression in the Bcl11b^{TdT} mouse. BM and lung ILC2s were identified as Lin^{-}IL-7R{α}^{+}IL-33R{α}^{+}CD25^{+}; MLN ILC2s as Lin^{-}IL-7R{α}^{+}Sca1^{+}; LPL ILC2s as Lin^{-}IL-7R{α}^{+}KLRG1^{+}; IEL ILC1s as Lin^{-}NKP46^{−}NK1.1^{−}CD160^{−}; liver DX5{−} and DX5{+} NK cells as CD3{−}TCR{β}^{−}NK1.1{+}; LPL NCR+ ILC3s as Lin^{-}NKP46^{−}NK1.1{+}; LPL CD4{+} T cells as Lin^{-}KLRG1^{+}IL-7R{α}^{−}CD4^{−}CCR6^{+}; LPL CD4{+} LTi cells as Lin^{-}KLRG1^{+}IL-7R{α}^{−}CD4^{−}CCR6^{+}; and Lin as B220, CD19, CD5, CD3, CD8, TCR{γδ}, TCR{β}, CD11b, Gr-1, and Ter119. (B) Bcl11b expressing leukocytes in the lung were elicited by IL-25 or IL-33 cytokine administration and examined by flow cytometry. Wild-type mice treated with PBS (wt+PBS) were used as the negative control for the Tdtomato signal. (C) Production of IL-5 (intracellular staining) by Bcl11b{+} cells from ex vivo stimulated BM and lung cells was assessed by flow cytometry. Numbers in plots denote percentages of cells in the indicated areas. ILC gating strategies are noted in Fig. S1. Data in all panels are representative of three to nine mice analyzed in at least three independent experiments.

loss of the T cell identity (Wakabayashi et al., 2003; Ikawa et al., 2010; Li et al., 2010a,b; Avram and Califano, 2014). Two studies indicate that Bcl11b expression was detected in ILC2s (Wong et al., 2012; Yang et al., 2013). We thus systematically investigated Bcl11b gene expression in ILCs in a Bcl11b reporter mouse and identified the essential role of Bcl11b in the development of ILC2s from hematopoietic progenitors.

Figure 1. The Bcl11b gene is specifically expressed in ILC2s in ILCs. (A) Flow cytometry was performed on ILC subsets to assess Bcl11b expression in the Bcl11b^{TdT} mouse. BM and lung ILC2s were identified as Lin^{-}IL-7R{α}^{+}IL-33R{α}^{+}CD25^{+}; MLN ILC2s as Lin^{-}IL-7R{α}^{+}Sca1^{+}; LPL ILC2s as Lin^{-}IL-7R{α}^{+}KLRG1^{+}; IEL ILC1s as Lin^{-}NKP46^{−}NK1.1^{−}CD160^{−}; liver DX5{−} and DX5{+} NK cells as CD3{−}TCR{β}^{−}NK1.1{+}; LPL NCR+ ILC3s as Lin^{-}NKP46^{−}NK1.1{+}; LPL CD4{+} LTi cells as Lin^{-}KLRG1^{+}IL-7R{α}^{−}CD4^{−}CCR6^{+}; LPL CD4{+} LTi cells as Lin^{-}KLRG1^{+}IL-7R{α}^{−}CD4^{−}CCR6^{+}; and Lin as B220, CD19, CD5, CD3, CD8, TCR{γδ}, TCR{β}, CD11b, Gr-1, and Ter119. (B) Bcl11b-expressing leukocytes in the lung were elicited by IL-25 or IL-33 cytokine administration and examined by flow cytometry. Wild-type mice treated with PBS (wt+PBS) were used as the negative control for the Tdtomato signal. (C) Production of IL-5 (intracellular staining) by Bcl11b{+} cells from ex vivo stimulated BM and lung cells was assessed by flow cytometry. Numbers in plots denote percentages of cells in the indicated areas. ILC gating strategies are noted in Fig. S1. Data in all panels are representative of three to nine mice analyzed in at least three independent experiments.
systematically explored Bcl11b expression in ILC development. At steady state, Bcl11b expression was found in all ILC2s in the BM, the lung, the mesenteric LN (MLN), and small intestine lamina propria (siLP; Fig. 1 A and Fig. S1, A–C and G). In contrast, ILC1s and ILC3s, including intraepithelial lymphocyte (IEL) ILC1s, liver DX5+ and DX5− NK cells, spleen NK cells, lamina propria lymphocyte (LPL) NCR+ILC3s, LPL CD4+ or CD4− lymphoid tissue inducers

Figure 2. Bcl11b marks early committed ILC2Ps. (A–C) Analysis of expression of Bcl11b, Gata3, ICOS, and IL-33R in the indicated populations of Bcl11bTdT mice. Bcl11b expression in BM LSKs, CLPs (Lin−Flt3−IL-7Rα+), and ChILPs (A) and in ChILPs and ILC2Ps (B) was assessed by flow cytometry. Gating strategies are noted in Fig. S2. (C) Expression of Gata3, ICOS, and IL-33R in ChILPs and ILC2Ps was analyzed by flow cytometry. (D) The in vivo differentiation potential of Bcl11b+ChILPs, ILC2Ps, CLPs, and Bcl11b−ChILPs was assessed by adaptive transfer followed by flow cytometric analysis. Donor-derived cells (CD45.1−) in the siLP were screened for ILC1, ILC2, and ILC3. (E) The in vitro differentiation potential of Bcl11b+ChILPs was also assessed by flow cytometry. Sorted Bcl11b+ and Bcl11b− ChILPs were cultured on OP9 cells for 6 d in the presence of 20 ng/ml IL-7 and 20 ng/ml SCF. ILC2 was defined as ICOS−NK1.1−CD25+, ILC1/conventional NK was defined as ICOS−NK1.1−NKp46+, and ILC3 was defined as ICOS−NK1.1− as previously reported (Constantinides et al., 2014). Numbers in flow cytometry plots denote percentages of cells in the indicated areas. At least three mice were analyzed in each experiment, and all the experiments were independently repeated at least three times.
Bcl11b is required for ILC2 development | Yu et al.

Bcl11b has a dose-dependent role in ILC2 development. ILC2s in the adult (14 wk old) wild-type mice (+/+) and Bcl11b mutant heterozygotes (+/-) were analyzed by flow cytometry and quantitated. (A) Cell numbers of ILC2s (Lin\(^{-}\)) were analyzed by flow cytometry and quantitated. (B) Percentages of KLRG1\(^{+}\) cells in BM ILC2s. (C) Lung ILC2s (Lin\(^{-}\)IL-7R\(^{+}\)) was administered, to 34% and 36%, respectively (Fig. 1 B). Notably, almost all of cells in the ChILP or ILCP compartment were reported to generate only ILC2s in vitro (Constantinides et al., 2014; Klose et al., 2014). High levels of Bcl11b expression mark the commitment of the T cell lineage in the thymus (Li et al., 2010a,b; Yu et al., 2012). We asked whether Bcl11b is also involved in early development of ILC2s. Consistent with previous studies, Bcl11b expression was not detected in either the Lin\(^{-}\)Sca1\(^{+}\)c-Kit\(^{+}\) (LSK) compartment or CLP (Fig. 2 A; Li et al., 2010b). However, in the ChILP compartment defined by Lin\(^{-}\)Flt3\(^{+}\)IL-7R\(^{+}\)α\(_{β}\),CD27\(^{-}\)CD25\(^{-}\)CD244\(^{+}\) (Fig. S2), coincidentally, Bcl11b expression was found in ~28% of ChILPs (Fig. 2 A). Expression of Bcl11b appeared to increase from Bcl11b\(^{-}\)/ChILPs to ILC2 progenitors (ILCPs; Fig. 2 B and Fig. S2). Moreover, Bcl11b\(^{-}\)/ChILPs expressed other ILC2 genes such as Gata3 and ICOS, but little IL-33R (Fig. 2 C). To test whether these Bcl11b-expressing ChILPs overlap with those ones that generate only ILC2s (Constantinides et al., 2014; Klose et al., 2014), we intravenously injected purified Bcl11b\(^{-}\)/ChILPs into sublethally irradiated alymphoid Rag2\(^{-/-}\)Il2γ\(^{-/-}\) mice to examine their in vivo developmental potential. 6–8 wk after transplantation, siLP cells from recipients were harvested for ILC analysis. Bcl11b\(^{-}\)/ChILPs produced only ILC2s, similar to what ILC2Ps (Lin\(^{-}\)Flt3\(^{-}\)IL-7R\(^{+}\)α\(_{β}\),CD27\(^{-}\)CD25\(^{-}\)CD244\(^{+}\) did (Fig. 2 D; Hoyler et al., 2012; Klose et al., 2014). On the other hand, both CLPs and Bcl11b\(^{-}\)/ChILPs produced CD4\(^{+}\) and CD4\(^{-}\) LTi cells besides ILC2s (Fig. 2 D). These results indicate that these Bcl11b\(^{-}\)/ChILPs are already committed to the ILC2 lineage and may represent an earlier progenitor population (CD25\(^{-}\)IL-33R\(^{-}\)) than ILC2P (CD25\(^{+}\)IL-33R\(^{+}\)). We subsequently performed short-term in vitro fate assay, which again demonstrated that Bcl11b\(^{-}\)/ChILPs only produced ILC2 (Fig. 2 E). Therefore, Bcl11b expression in ChILPs marks early committed ILC2Ps.

Bcl11b has critical and cell-autonomous functions in early ILC2 development

We started investigating Bcl11b functions in ILC2 development by examining the Bcl11b heterozygous germline loss of function mutant mice (+/−) because the homozygous mutants die at birth (Wakabayashi et al., 2003). Compared with the wild-type control mice (+/+), the heterozygotes had ~59% of ILC2s (Lin\(^{-}\)IL-33R\(^{-}\)IL-7R\(^{+}\)α\(_{β}\),CD25\(^{-}\)CD25\(^{-}\)CD244\(^{+}\) in the BM (Fig. 3 A and Fig. S3 A), indicating that Bcl11b has a dose-dependent role in ILC2 development. Surprisingly, compared with the wild-type control mice, the heterozygotes had significantly higher percentages of mature ILC2s in the BM defined by CD25\(^{-}\)KLRG1\(^{-}\) (Fig. 3 B and Fig. S3 A), indicating that Bcl11b might also normally prevent production of mature ILC2s from progenitors. On the other hand, ILC2 numbers in the lung of the heterozygotes were not significantly reduced (Fig. 3 C and Fig. S3 B).

We performed further analysis of Bcl11b in ILC2 development using the Bcl11b\(^{-}\)/Rosa26\(^{+}\)Cd2ErT2/Cd2ErT2 conditional knockout mice (Li et al., 2010b). These mice were grossly normal and fertile as previously reported (Li et al., 2010b),
Bcl11b deletion in these mice was achieved by administration of Tamoxifen (Tam; the treated mice are referred to as Bcl11b^{fl/fl}). We chose Bcl11b^{+/+}Rosa26^{CreERT2/CreERT2} mice as the control (the treated mice are referred to as Bcl11b^{+/−}) to help exclude the potential defects from Cre toxicity. We analyzed the mice 2–3 wk after Tam administration. Bcl11b deletion caused severe phenotypes in the BM ILC2 compartment, with only ∼6% left compared with the control (Fig. 4, A and B). In contrast, lung ILC2s were not obviously reduced (Fig. 4 C and Fig. S4 A). Rather, more of them expressed KLRG1 (Fig. 4 D and Fig. S4 A), which is consistent with the result that the Bcl11b heterozygous mutants have increased mature ILC2s (Fig. 3 B and Fig. S3 A). This result shows that Bcl11b inactivation causes severe defects in early development of ILC2s in the BM.

To address whether the defects in ILC2s caused by Bcl11b deficiency were cell autonomous or intrinsic to hematopoietic cells, we intravenously injected Bcl11b^{+/−}Rosa26^{CreERT2/CreERT2} BM cells into lethally irradiated CD45.1⁺ C57B6 recipients. The recipients were allowed 6–8 wk for donor cell reconstitution before Tam was administered to delete Bcl11b. BM cells from these mice were subsequently harvested 3–4 wk after Tam treatment. (G–K) LSKs from the Bcl11b^{fl/fl} or control mice were transplanted into the Rag2^{−/−}Il2rg^{−/−} recipients (CD45.1⁺). 8 wk after engraftment, the donor cells (CD45.1⁺) were analyzed by flow cytometry. (G–J) ILC2s or ILC1s were enumerated as shown. (H) BM ILC2 numbers. (I) Lung ILC2 numbers. (K) sILP ILC2 numbers. Error bars indicate the SD. Numbers in flow cytometry plots denote percentages of cells in the indicated areas. All the experiments were independently repeated at least three times, n = 4 mice per genotype. Statistical significance is indicated as follows: *, P < 0.05; **, P < 0.01. Additional gating strategies are noted in Figs. S4 and S5.

We next purified BM hematopoietic progenitors (LSKs) from either Tam-treated Bcl11b^{fl/fl}Rosa26^{CreERT2/CreERT2} or control mice and intravenously injected these cells into lethally irradiated allogeneic Rag2^{−/−}Il2rg^{−/−} recipients (CD45.1⁺; Serafini et al., 2014) with helper BM cells (CD45.1⁺). After 8 wk of engraftment, the recipients were analyzed for ILC engraftment. Control LSKs (Bcl11b⁺ Stephens Moore, Boston Children’s Hospital, and B. Grouse, Boston Children’s Hospital, unpublished observations).
In contrast, Bcl11bfl/fl LSKs generated no ILC2s in the BM of chimeras (Fig. 4, G and H), and there were barely any detectable ILC2s in the lung or in the sILP (Fig. 4, J and K, and Fig. S5, B and C). On the other hand, ILC1Ps in the BM or LPL CD4+ or CD4− LTi cells were not affected by Bcl11b deletion (Fig. 4 I and Fig. S5, A and C).

Bcl11b deletion promotes expression of genes that are at high levels in mature ILC2s

It was reported that the OP9-DL1 culture system allows CLPs to differentiate to ILC2s (Wong et al., 2012). We purified Bcl11bfl/fl CLPs and co-cultured them with OP9-DL1 stromal cells. No ILC2s were produced from Bcl11bfl/fl CLPs (Fig. 5 A), which is consistent with the previous in vivo data. Our previous study demonstrates that Bcl11b is essential for T cell identity maintenance (Li et al., 2010b). To investigate the functions of Bcl11b in the committed ILC2s and to test whether Bcl11b is also required for ILC2 identity maintenance, we purified ILC2Ps from Bcl11blox/loxRosa26CreERT2/CreERT2 conditional knockout mice and cultured them on OP9-DL1 stromal cells to produce ILC2s. We subsequently treated the cultured cells with Tam to delete Bcl11b. After IL-25 or IL-33 stimulation, Bcl11bfl/fl ILC2s were still able to produce IL-5 but not IFN-\(\gamma\) (Fig. 5 B), demonstrating that committed ILC2s are able to produce type 2 cytokine in the absence of Bcl11b, in contrast to its essential role in the early development of ILC2s. However, deletion of Bcl11b led to substantially more ILC2s that expressed KLRG1 (Fig. 5 C), which is consistent with the in vivo data (Fig. 3 B, Fig. 4 D, Fig. S3 A, and Fig. S4 A). Moreover, Bcl11b deficiency led to higher percentages of ILC2s producing IL-5 (Fig. 5 B). Therefore, Bcl11b is essential for the differentiation of ILC2s from hematopoietic progenitors but may also suppress genes that are highly expressed in mature ILC2s. Indeed, quantitative RT-PCR (qRT-PCR) confirmed up-regulation of Il5, Il13, Klng1, Gata3, and Rora, which are highly expressed in mature ILC2s (Hoyler et al., 2012) in Bcl11bfl/fl ILC2 cultures (Fig. 5 D).

Immune challenges confirm no functional ILC2s generated from Bcl11b-deficient hematopoietic progenitors

Recent studies suggest a critical role for ILC2s in mediating protease-induced airway inflammation (for example, Halim et al., 2012a). We wished to confirm the essential role of Bcl11b in ILC2 development upon immune challenges. We purified LSKs from Bcl11blox/loxRosa26CreERT2/CreERT2Rag1−/− mice

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Bcl11b is required for ILC2 development from early progenitors in vitro but represses genes that are highly expressed in mature ILC2s. (A) In vitro differentiation potential of CLPs to ILC2s (ICOS+IL-33R+) was assessed by flow cytometry. Bcl11bfl/fl and control CLPs were cultured on OP9-DL1 cells in the presence of IL-7 and IL-33 for 22 d before flow cytometric analysis. In each experiment, CLPs from three to four mice of each genotype were pooled. (B and C) Purified BM ILC2s (Lin−Flt3−IL-7R\textalpha{a}GR+CD27+CD25+CD244{−}) were cultured on OP9-DL1 cells in the indicated conditions, and expression of IL-5 and KLRG1 in these cells was assessed by flow cytometry 10–14 d after Tam treatment. (D) Expression of Bcl11b, Rora, Il5, Il13, Klng1, and Gata3 in cultured Bcl11bfl/fl ILC2s was assessed by qRT-PCR. Data represent mean values of three independent biological replicates, and all values were normalized to Gapdh expression. Expression of genes in the control cells was normalized as one. Error bars indicate the SD. Numbers in flow cytometry plots denote percentages of cells in the indicated areas. All the experiments were independently repeated at least three times. Statistical significance is indicated as follows: **, \(P < 0.01\).}
\end{figure}
that were treated with Tam (Bcl11b+/+Rag1−/−) and transplanted to sublethally irradiated lymphoid Rag2−/−Il2rg−/− recipients (CD45.1+). 8–10 wk after engraftment, the recipients were intranasally challenged with papain, which induces rapid IL-5 production and eosinophil infiltration in the airway (Halim et al., 2012a). Consistent with our above results (Fig. 4 J and Fig. S5 B), no ILC2s were elicited in the lung after papain challenge in Bcl11b+/+Rag1−/− chimeras at 84 h (Fig. 6, A and B). Papain induced eosinophil infiltration in the bronchoalveolar lavage (BAL) fluid and in the lung in control recipients, but not in the Bcl11b+/+Rag1−/− ones (Fig. 6, C and D). Furthermore, the papain challenge also failed to induce IL-5 or IL-13 production in the BAL fluid in recipient mice (Fig. 6 E).

Influenza virus infection induces type 2 immune responses and production of prototypical cytokines such as IL-5 by ILC2s (Gorski et al., 2013), which is linked to asthma exacerbation. We thus examined immune responses of BM chimeras

Figure 6. Immune challenges confirm no ILC2 development from Bcl11b-deficient hematopoietic progenitors. LSKs of Bcl11b+/+Rag1−/− or the control (Bcl11b+/+Rag1−/−) were transplanted into Rag2−/−Il2rg−/− mice recipients (CD45.1+) and subjected to papain treatment (intranasally) or influenza virus infection (inoculated intranasally). (A–E) ILC2-mediated lung immune responses after papain treatment were assessed by flow cytometry. (A and B) Donor ILC2s (CD45.1−Lin−IL-7Rα−IL-33R+CD25+) in the lung were analyzed by flow cytometry and enumerated as shown. (C and D) Eosinophil (Siglec-F+CD11c−) infiltration in the lung and BAL of mouse recipients was enumerated as shown. (E) IL-5 and IL-13 production in the BAL fluid of recipient mice was assessed by flow cytometry. (F) Lung ILC2s or BAL fluid IL-5 in recipients after influenza virus infection (H3N2) or allantoic fluid diluted 1:500 in PBS as the mock was assessed by flow cytometry and was quantitated as shown. (A and C) Numbers in the flow cytometry plots denote percentages of cells in the indicated areas. (A–F) Error bars indicate the SD. All the experiments were independently repeated at least three times (n = 4 mice per genotype). Statistical significance is indicated as follows: **, P < 0.01. Additional gating strategies are noted in Fig. S6.
reconstituted with LSKs upon influenza virus infection. Influenza virus infection induced expansion of ILC2s in the lung of the control recipient chimeras at day 5 after infection (Fig. 6 F and Fig. S6). In contrast, chimeras of Bcl11b–/–/Rag1–/– LSKs completely lacked ILC2s in the lung (Fig. 6 F and Fig. S6). The control recipients, but not Bcl11b–/–/Rag1–/– LSK chimeras, produced abundant IL–5 in the BAL fluid after influenza virus infection (Fig. 6 F). In summary, both immune challenges confirm the complete lack of ILC2 development potential in the Bcl11b–deficient hematopoietic progenitors.

We report here that Bcl11b is specifically expressed in ILCs that are committed to ILC2s and is essential for ILC2 development. Several transcription factors have been shown to have important functions in ILC2 development. Gata3 is critical for controlling the cell fate of ILC2s (Hoyler et al., 2012; Mjosberg et al., 2012; Klein Wolterink et al., 2013) and also for all IL–7Rα–expressing ILC development (Yagi et al., 2014). Rora appears to be specifically required for inducing ILC2s (Halim et al., 2012b; Wong et al., 2012), but not RORγt–expressing ILCs (Halim et al., 2012b). However, Rora is also expressed in other ILC subsets (see microarray data in Hoyler et al., 2012). Nfil3 is shown to control type 2 Th cytokine expression (Kashiwada et al., 2011), but recent results demonstrate that it is a key regulator of the development of other ILC subsets essential for immune protection in the lung and gut (Geiger et al., 2014; Seillett et al., 2014). Bcl11b is different from these factors. It is the first transcription factor that is found specifically expressed in ILC2s and is required for development of ILC2s from hematopoietic progenitors, a function similar to its role in T cell development. Interestingly, deletion of Bcl11b in ILC2s led to higher expression of many ILC2 genes, including several transcription factors mentioned above (Fig. 5 D). This is also reminiscent of Bcl11b’s role in T cells, where deleting Bcl11b results in up-regulated expression of genes of mature T cells (Kastner et al., 2010). Further dissection of the molecular and cellular mechanisms of Bcl11b in ILC2s and ILC–specific deletion of Bcl11b using the Cre system should facilitate better understanding of ILCs and of Bcl11b’s potential role in human disease.

Flow cytometry and cell sorting. RBCs were removed using ACK (Ammonium-Chloride-Potassium) Lysing Buffer (Lonza). Cells were suspended in a solution of 2% (vol/vol) FBS in PBS. Fc receptors were blocked with anti-CD16 (2.4G2) before antibody labeling. Cells were stained with antibodies on ice for 20 min before washing. Intracellular staining was performed according to the instructions of the FOXp3 Fix/Permeabilization Buffer Set (BioLegend). Cells were analyzed on a Fortessa (BD) or sorted on a MoFlo XDP (Beckman Coulter) according to the manufacturers’ standard operating procedures. Data were analyzed with FlowJo software, version X.0.7 (Tree Star).

Preparation of cell suspensions. BM cells were isolated by gently crushing femurs and tibias before filtration (70-µm filter). Cells from lung and sILP were prepared according to the instructions of the Lung Dissection kit (Miltenyi Biotech) and Lamina Propria Dissection kit (Miltenyi Biotech), respectively. The tissues were digested in a shaking water bath at 37°C for 30 min. After dissection, leukocytes were enriched by percoll gradient centrifugation.

Ex vivo production of cytokines from ILC2 cells. ILC2s were stimulated ex vivo with PMA and ionomycin (Cell Stimulation Cocktail; eBioscience) for 4 h for IL–5 production, in the presence of the protein transport inhibitor cocktail (eBioscience). The cells were subsequently stained intracellularly for IL–5.

Cytokine administration in vivo. Mice were given intraperitoneal injections of 500 ng IL–25 or IL–33 (BioLegend) on days 0–3. On day 4, tissues were collected for analysis.

Adoptive transfers in vivo. For adoptive transfer experiments, cell populations highly purified by flow cytometry were injected intravenously into sublethally irradiated (1 × 450 rad) Rag2–/–/IL2rg–/– recipient mice (CD45.1+) via the tail vein. The drinking water was supplemented with antibiotics for 2 wk after irradiation.

BM chimeras. Single-cell suspensions of BM cells from the Bcl11bfl/flRosa26CreERT2/CreERT2 or control Bcl11b+/+Rosa26CreERT2/CreERT2 and control Bcl11b+/+Rosa26CreERT2/CreERT2 mice were injected intravenously into lethally irradiated (2 × 500 rad) C57B6 recipient mice (CD45.1+) for reconstitution for 6–8 wk. The drinking water was supplemented with antibiotics for 2 wk after irradiation.

For hematopoietic progenitor reconstitution in vivo, the LSKs were purified from the BM of Bcl11bfl/fl, Bcl11bfl/flRag1–/–, or the Bcl11b+/+ or Bcl11b+/+Rag1–/– control mice. The sorted LSKs (10,000 cells) were injected into sublethally irradiated (1 × 450 rad) Rag2–/–/IL2rg–/– recipient mice (CD45.1+) or with helper CD45.1+ BM cells (2 × 106 cells) into lethally irradiated (2 × 500 rad) Rag2–/–/IL2rg–/– recipient mice (CD45.1+) via the tail vein.

Papain administration. The mice were anesthetized with 3% isoflurane and then were intranasally administered with papain (10 µg in 40 µl PBS) every 24 h on days 0–2. 12 h after the last challenge, lungs and BAL fluid were collected and analyzed.

Influenza virus infection. The BM chimeras were anesthetized with 3% isoflurane and were inoculated intranasally with influenza A virus X31 (H3N2) in 50 µl PBS of 104 PFU. The virus was grown and collected from embryonated chicken eggs (48–72 h). The control (mock infected) mice were treated intranasally with allantoic fluid diluted 1:500 in PBS. On day 5 after infection, lung and BAL fluid (lavaged with 0.4 ml PBS) were collected.

MATERIALS AND METHODS

Mice. The Bcl11b–Tomato reporter mice (Bcl11bT/T) and Bcl11b+/-Rosa26GFP/CreERT2/CreERT2 mice were generated on the C57BL/6 genetic background by backcrossing to C57BL/6 mice for 11 generations. The Bcl11b+/-Rosa26GFP/CreERT2/CreERT2 mice were crossed to Rag1–/– mice (C57BL/6) to generate Bcl11b+/-Rosa26GFP/CreERT2/CreERT2/Rag1–/– mice. Bcl11b germine heterozygous mutant (+/-) and the wild-type control mice (+/+ or +/+) were on the 129S5 background. C57BL/6 CD45.1+ wild-type or Rag2–/–/IL2rg–/– mice (C57BL/6 CD45.1; Serafini et al., 2014) were used as recipients for transplantation of BM cells or LSKs. All mice used were from colonies maintained at the research support facility of the Sanger Institute. Housing and breeding of mice and experimental procedures were done according to the UK 1986 Animals (Scientific Procedures) Act and the Animal Welfare and Ethical Review Body of the Wellcome Trust Sanger Institute.

Reagents. Fluorochrome- or biotin-labeled monoclonal antibodies (clones denoted in parentheses) against B220 (RA3-6B2), CD19 (6D5), CD3ε (H150-2C11), CD8α (53–67), TCRβ (B20.6), CD49b (DX5), TCRγδ (GL3), NK1.1 (PK136), Nkp46 (29A1.4), CD11b (M1/70), CD11c (N418), Gr1 (RB6-8C5), Ter119 (TER-119), e–kit (B6), Fkh3 (A2F1/6), Scalc (1D7), IL–7Rα (SB199), CD25 (PC6), CD45.1 (A20), CD45 (30–F1), Super-F (ES0-3440), CD27 (LG.3A10), CD234 (2B4), α4β7 (DAKTK32), IL–33R (R/WST2–2), CCR6 (29–2L), IL–5 (TRFK5), IL–13 (eBio13a), IFN–γ (XMG1.2), Gata3 (L50–823), and RORγt (Q31–378) were purchased from BD, BioLegend, or eBioscience. LEGENDplex Mouse Th2 Panel (6-plex) (BioLegend) was used for BAL cytokine detection.

Published May 11, 2015
In vitro culture assays. The IL2C differentiation potential of hematopoietic progenitors was performed as previously reported (Wong et al., 2012). In brief, freshly sorted CLPs from the Bcl11bflox/floxRosa26CreERT2/CreERT2 and control Bcl11b+/+ Rosa26CreERT2/CreERT2 mice that were treated with Tam 4 d earlier (4.0 mg Tam by intraperitoneal injection over three consecutive days) were cultured on OP9-DL1 monolayers in the presence of 10 ng/ml IL-7 (PeproTech) and 10 ng/ml IL-33 (PeproTech) for 22 d.

For the short-term fate assay, purified Bcl11b+ ChILPs and Bcl11b+ ChILPs were cultured on OP9 monolayers in the presence of 25 ng/ml IL-7 (PeproTech) and 25 ng/ml Stem Cell Factor (SCF; PeproTech) for 6 d as previously described (Constantinides et al., 2014).

For deleting Bcl11b in ILC2s, sorted ILC2Ps from the BM of Bcl11b+/+ Rosa26CreERT2/CreERT2 and control mice were cultured on OP9-DL1 monolayers in the presence of 20 ng/ml IL-7, 20 ng/ml SCF, and 10 ng/ml IL-2 or 20 ng/ml IL-7 plus 20 ng/ml IL-25 or plus 20 ng/ml IL-33. After 3–5 d, Tam was added in the medium to induce Bcl11b deletion in vitro. Cells were collected and analyzed 10–14 d after Tam treatment.

qRT-PCR. RNA was extracted from in vitro cultured IL2C and reverse transcribed. TaqMan primer and probe sets (Applied Biosystems) were used for quantification of the expression of Bcl11b, Rora, Tcf7, Gata3, Il-5, Il-13, and Klf11. Expression was quantified relative to that of Gapdh.

Statistical analysis. Data were statistically analyzed and figures were prepared using Microsoft Excel. A two-tailed Student’s t test was used throughout this work to evaluate statistical significance. Significance is indicated as follows: *, P < 0.05; **, P < 0.01.

Online supplemental material. Fig. S1 contains gating strategies of ILCs. Fig. S2 shows the gating strategies of ILC2s. Fig. S3 presents the gating strategies of ILCPs. Fig. S4 contains gating strategies of ILCs in the BM and lung of wild-type and Bcl11b heterozygous mutant mice. Fig. S5 shows gating strategies of donor LSK-derived ILCs in chimeras. Fig. S6 presents gating strategies of ILCPs. Fig. S7 contains gating strategies of ILC2s in the BM and lung of wild-type and Bcl11b homozygous mutant mice. Fig. S8 contains gating strategies of ILC2s in the BM and lung of wild-type and Bcl11b heterozygous mutant mice. Fig. S9 contains gating strategies of ILC2s in the BM and lung of wild-type and Bcl11b homozygous mutant mice. Fig. S10 contains gating strategies of ILC2s in the BM and lung of wild-type and Bcl11b heterozygous mutant mice.

SUPPLEMENTAL MATERIAL

Yu et al., http://www.jem.org/cgi/content/full/jem.20142318/DC1

Figure S1. Gating strategies of ILCs. (A) BM ILC2: Lin-IL-7Ra-IL-33R-CD25+. (B) Lung ILC2: CD45-IL-7Ra-IL-33R-CD25+. (C) MLN ILC2: Lin-IL-7Ra-Sca1+. (D) IEL ILC1: CD45-IL-7Ra-NKp46-NK1.1-CD160+. (E) Liver DX5- and DX5+ NK cells: CD3-TCR- NK1.1-. (F) Spleen NK cells. (G) siLP ILC2 (CD45-IL-7Ra-IL-33R-KLRG1+), CD4+LTi (CD45-IL-7Ra-CCR6+CD4+), CD4- LTi (CD45-IL-7Ra-CCR6+CD4-), NCR+ ILC3 (CD45-IL-7Ra-NKp46-NK1.1+), and LPL NKp46-NK1.1+ cells. Lin: B220, CD19, CD5, CD8, TCRγδ, TCRβ, CD11b, Gr-1, and Ter119. The cells of interest (pink boxes) were gated and further analyzed. All the experiments were independently repeated at least three times.
Figure S2. Gating strategies of ILCPs. Gating strategy (flow cytometry) for Lin[−]Flt3[−]IL-7Ra[−]α4β7[−]CD27[−]CD25[−]CD244[−] compartment (ChILPs) and Lin[−]Flt3[−]IL-7Ra[−]α4β7[−]CD27[−]CD25[−]CD244[−] (ILC2P) with the indicated markers. The cells of interest (pink boxes) were gated and further analyzed. All the experiments were independently repeated at least three times.

Figure S3. Gating strategies of ILC2s in the BM and lung of wild-type and Bcl11b heterozygous mutant mice. Wild-type and Bcl11b heterozygous mutant mice from the same litters were analyzed by flow cytometry with the indicated markers for ILC2s at the indicated mouse ages. (A) BM ILC2s. (B) Lung ILC2s. Numbers in plots denote percentages of cells in the indicated areas. All the experiments were independently repeated at least three times (n = 4 mice per genotype).
Figure S4. Gating strategies of ILCs in the Bcl11b^{fl/fl}Rosa26^{CreERT2/CreERT2} mice, control mice, or in BM chimeras. (A) Flow cytometry analysis of ILC2s in the lung of the Bcl11b^{fl/fl} or control mice. (B and C) Flow cytometry analysis of donor (CD45.1⁺/H11002) BM-derived ILC2s or ILC1Ps (Lin[−]NKp46·NK1.1^{−/−}CD49a^{−/−}IL-7Rα^{−/−}) in mouse BM chimeras 3–4 wk after Tam treatment to delete Bcl11b. Numbers in plots denote percentages of cells in the indicated areas. All the experiments were independently repeated at least three times (n = 4 mice per genotype).
Figure S5. Gating strategies of donor LSK-derived ILCs in chimeras. Flow cytometry of donor LSK-derived ILC1Ps in the BM (A), ILC2s in the lung from LSKs (B), and donor LSK-derived ILC2s, CD4+ LTi, and CD4+ LTi cells in the sILP (C). Numbers in plots denote percentages of cells in the indicated areas. All the experiments were independently repeated at least three times (n = 4 mice per genotype).
Figure S6. Gating strategies (flow cytometry) of ILC2s in the lung of mouse recipients engrafted with control or Bcl11bfl/fl Rag1−/− LSKs with the indicated markers. Recipients were challenged (intranasally) with either influenza virus (H3N2) or control allantoic fluid diluted 1:500 in PBS as the mock infection. Numbers in plots denote percentages of cells in the indicated areas. The experiments were independently repeated two times (n = 4 mice per genotype).