GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment

Xiaoming Wang,1,2* Hayakazu Sumida,1,2 and Jason G. Cyster1,2

1Howard Hughes Medical Institute and 2Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143

Intraepithelial lymphocytes (IELs) play an important role in maintaining the physiology of the small intestine. The majority of mouse IELs express CD8αα and are either γδ or αβ T cells. Although the development and homing of CD8αα IELs have been studied in some detail, the factors controlling their homeostasis and positioning are incompletely understood. Here we demonstrate that G protein–coupled receptor 18 (GPR18) is abundantly expressed in CD8αα IELs and that mice lacking this orphan receptor have reduced numbers of γ8T IELs. Mixed bone marrow chimera experiments reveal a markedly reduced contribution of GPR18–deficient cells to the CD8αα IEL compartment and a reduction in the CD8αβ T cell subset. These defects could be rescued by transduction with a GPR18–expressing retrovirus. The GPR18–deficient γ8T IELs that remained in mixed chimeras had elevated Thy1, and there were less granzyme B+ and Vγ7+ cells, indicating a greater reduction in effector–type cells. Flow cytometric analysis indicated GPR18 deficiency more strongly affected the CD8αα cells in the intraepithelial compared with the adjacent lamina propria compartment. These findings establish a requirement for GPR18 in CD8αα and CD8αβ IELs, and we suggest the receptor has a role in augmenting the accumulation of CD8 T cells in the intraepithelial versus lamina propria compartment.
CD4 αβT cells, and there are very few cells with an IEL phenotype in the lamina propria (Cheroutr et al., 2011). The chemokine CCL25 (TECK) and its receptor CCR9 play a crucial role in T cell and plasma cell homing to the small intestinal intraepithelial and lamina propria compartments (Kunkel et al., 2003; Pabst et al., 2004; Stenstad et al., 2007; Wurbel et al., 2007). CCL25 is expressed by small intestinal epithelial cells, with expression being highest in the duodenum and decreasing incrementally in the jejunum and ileum (Stenstad et al., 2007). Mice lacking CCL25 or CCR9 exhibit 3- to 10-fold reductions in γδT CD8αα IELs (Wurbel et al., 2001, 2007; Uehara et al., 2002), and homing of mucosally activated effecter CD8 T cells to the intestine is compromised (Stenstad et al., 2007; Wurbel et al., 2007). CCL25 and CCR9 deficiency was also shown to cause a reduction in CD8 but not CD4 T cell frequencies in the lamina propria (Wurbel et al., 2007). CD8αα αβT IEL numbers were not reduced in CCR9- or CCL25-deficient mice despite similar CCR9 expression on CD8αα γδT and αβT IELs (Wurbel et al., 2001, 2007; Uehara et al., 2002). CD8αβ and CD4 IEL numbers were also not reduced. The migration dynamics of IELs in the steady-state has recently been examined by two-photon microscopy (Chennupati et al., 2010; Edelblum et al., 2012). One study suggested the cells were mostly immobile (Chennupati et al., 2010), whereas a second provided evidence that they moved dynamically within and between intraepithelial niches (Edelblum et al., 2012). Despite these advances, the mechanisms controlling the homeostasis and positioning of the different intestinal T cell subsets remain incompletely understood.

Here we identify a role for a novel G protein–coupled receptor, GPR18, in promoting the maintenance of small intestinal CD8αα γδT, αβT, and CD8αβ IELs, and we provide evidence that this receptor favors positioning of CD8αα γδT cells in the intraepithelial versus lamina propria compartment.

RESULTS AND DISCUSSION

GPR18 is highly expressed in lymphoid tissues and is widely expressed in immune cells, being abundant in splenic T and B cells (Fig. 1 A). Public domain gene expression data indicated two- to threefold higher expression of GPR18 in intestinal IELs compared with splenic T cells (http://www.imagen.org; http://refdic.rcai.riken.jp), and this was confirmed in quantitative PCR (QPCR) analysis of sorted cells, with expression being highest on CD8αα γδT IELs and CD8αα αβT IELs, followed by CD8αβ αβT IELs (Fig. 1 A). GPR18 transcript abundance in intestinal CD4 αβT cells, which are rare within IEL preparations (~5%) and are much more abundant in the lamina propria (~30%), was similar to the expression level in splenic lymphocytes (Fig. 1 A). To examine the role of GPR18 in lymphocytes, we generated GPR18-deficient mice by gene targeting. GPR18-deficient mice had normal numbers of splenic and LN αβ and γδT cells and B cells, and lymphocyte development in thymus and BM appeared normal (not depicted). Analysis of IELs showed there were similar numbers of total cells in matched adult (2–3 mo old) control and Gpr18−/− mice (Fig. 1 B). However, when the IEL subsets were examined, Gpr18−/− mice exhibited a selective deficiency in CD8αα γδT IELs (Fig. 1 C). The properties of the IEL compartment are known to change with age (Laky et al., 1997; Cheroutr et al., 2011), and analysis of a group of aged (~7 mo old) Gpr18−/− and littermate control mice showed that there was now a significant reduction in total IEL numbers (Fig. 1 D). The CD8αα γδT IEL compartment continued to be the most affected (approximately fourfold reduced, P < 0.01), but CD8αα and CD8αβ αβT cell numbers were also reduced (approximately twofold, P < 0.05, n = 6; not depicted).

GPR18 has been suggested to promote cell chemotaxis in a Gβi protein–coupled manner to the endocannabinoid N-arachidonoyl-glycine (Kohn et al., 2006; McHugh et al., 2012). However, when WEHI231 B cells transduced with GPR18 were tested for responses to this ligand, no migration was observed, whereas the same cells transduced with several other receptors, including the endocannabinoid receptor CB2, the oxysterol receptor EBI2, the sphingosine-1-phosphate receptor S1PR1, and the chemokine receptor CXCR5, showed robust migratory responses to the appropriate ligands (Fig. 1 E and not depicted). The inability of GPR18 to respond to N-arachidonoyl-glycine was also noted in a study using β-arrestin recruitment to assess GPCR activation (Yin et al., 2009). Although we could not confirm N-arachidonoyl-glycine as a ligand for GPR18, we did observe that transduction of WEHI231 cells with GPR18 led to an approximately fivefold reduction in the CXCR4-mediated chemotactic response to CXCL12 (Fig. 1 E). This type of inhibitory effect is seen after transduction of WEHI231 cells with a range of established Gαi-coupled receptors, including CB2, EBI2, and S1PR1 (Fig. 1 E and not depicted), but does not occur when the cells are transduced withGPCRs that are established not to be Gαi coupled, including the thromb oxane A2 receptor (TBXAR2) and S1PR2 (Fig. 1 E and not depicted). Based on these data, we suggest that GPR18 is effective in competing for Gαi binding and that it may therefore be able to couple to this G protein and have a pro-migratory role.

Analysis of duodenum sections for the distribution of γδT IELs showed that although reduced in frequency in the GPR18-deficient mouse, the CD8αα γδT double-positive cells were distributed similarly in both types of mice, with most being in an intraepithelial location (Fig. 1 F). The migration dynamics of γδT IELs has recently been studied using real-time intravital imaging with discrepant findings regarding whether the cells are largely immobile (Chennupati et al., 2010), like dendritic epidermal T cells in the skin (Gray et al., 2011; Sumaria et al., 2011), or whether they are motile (Edelblum et al., 2012). To further examine whether IELs are motile and test whether GPR18 deficiency affected their movement dynamics, we developed a procedure to intravitaly label CD8αα+ IELs. Systemic injection of anti–CD8αα-PE 5 h before analysis led to uniform labeling of CD8αα+ cells in the epithelial and lamina propria compartments (Fig. 1 G). Using two-photon microscopy to image CD8αα+ IELs from the luminal side of duodenal villi, we observed WT cells moving...
up and down the lateral intercellular junctions of epithelial cells, migrating between epithelial cells via the subepithelial space, and occasionally accessing the lamina propria (Fig. 1 H and Video 1). These behaviors for total CD8α+ IELs are similar to the findings of Edelblum et al. (2012) for γδT IELs using TcrdEGFP reporter mice, supporting the conclusion that IELs are motile and suggesting that the major IEL populations (CD8αγδ T and CD8αα T) have similar movement dynamics. Analysis of GPR18-deficient mice using the same intravital CD8α-labeling procedure revealed that, at the level
Figure 2. Marked reduction of CD8α IELs in GPR18-deficient mixed BM chimeras. (A) B6-CD45.1+ mice were reconstituted with 50% CD45.1/2+ WT and 50% CD45.2+ BM, Gpr18+/-, or Gpr18-/- BM 2–3 mo before analysis. IELs were stained for the subsets as indicated. Numbers indicate percentage of cells in each gate. CD45.1+CD45.2- cells are radiation-resistant host cells. Ratios of WT, Gpr18+/-, or Gpr18-/- CD45.2+ cells versus WT CD45.1/2+ cells were plotted. (B) Ratios of Gpr18-/- versus WT CD8α+γβT IELs in different small intestine segments of mixed chimeras. The ratios were connected for each mouse. (C) Flow cytometry analysis of the indicated markers in the CD8α+γβT IELs from mixed chimeras. Graphs on the right show summary of data from several experiments, where % indicates fraction of cells positive for the marker and MFI indicates mean fluorescence index. Data are representative of more than five experiments in A and three experiments in B and C. (D) Transwell migration assay of CD8α+γβT IELs from mixed chimeras (left and middle) or nonchimeric mice (right) of the type indicated in response to medium alone (nil), 5 µg/ml CCL25, or 1 µg/ml CXCL10, shown as percentage of input cells that migrated. Graph on right shows the fold change in γβT IEL migration in response to CCL25 versus no chemokine. Data are representative of four experiments. (E) Number of CD8α+γβT IELs in WT, Ccr9-/-, and Ccr9-/- Gpr18-/- mice. (F) Frequency of Vγ7+ cells among CD8α+γβT IELs of WT and Ccr9-/- origin in WT:Ccr9-/- mixed chimeras. (G) Intracellular staining of stimulated CD8α+γβT IELs from mixed chimeras for IFN-γ and TNF, shown as frequency of positive cells. (H) Frequency of CD8α+γβT IELs in mixed chimeras that were positive for BrdU staining after 1 wk of in vivo labeling. (I) Frequency of CD8α+γβT IELs in mixed chimeras that were Annexin V+ by flow cytometric analysis. *, P < 0.05; **, P < 0.01; ***, P ≤ 0.001 (Student’s t test). In D, the migration of Gpr18-/- cells was significantly reduced compared with WT (P < 0.001).

In A and C–I each symbol represents an individual mouse, and the horizontal lines indicate the mean.

GPR18 is required for IEL compartmentalization | Wang et al.
that could be resolved with our current imaging platform, their CD8α− IEL migration dynamics were indistinguishable from those of the controls (Fig. 1 H and Video 2).

To further probe the stage at which GPR18 was influencing the accumulation of CD8αα γδT IELs, and to test whether the requirement was cell intrinsic, we generated mixed BM chimeras. This analysis revealed that even under conditions of competition there was no effect of GPR18 deficiency on CD4 or CD8 T cell numbers in the spleen or LNs (not depicted). However, within the IEL compartment there was a marked (~10-fold) defect in CD8αα γδT cells and there was now also a reduction in CD8αα αβT cells (~5-fold) and CD8αβ αβT cells (~3-fold), whereas CD4 αβT cells were unaffected (Fig. 2 A). A comparison of the ratio of GPR18-deficient and WT γδT IELs along the length of the small intestine revealed a graded effect with the strongest defect being in the duodenum (Fig. 2 B). The basis for the greater impact of GPR18 deficiency under competitive compared with noncompetitive conditions is not known, but might indicate a reduced ability compared with WT cells to access or use a maturation signal or trophic factor that is in limited supply.

Surface phenotyping revealed that the Gpr18−/− γδT IELs in the mixed BM chimeras were enriched for Thy1hi cells and were depleted for the major γδTCR typical of intestinal IELs, Vγ7 (Fig. 2 C). The Gpr18−/− IELs were also depleted for granzyme B–high cells (Fig. 2 C). The high Thy1 and low granzyme B expression is consistent with a less mature effector state (Ma et al., 2009; Cheroutre et al., 2011). CD103 (αE integrin) expression was comparable on the Gpr18−/− and control cells, whereas CCR9 and CXCR3 surface levels were slightly elevated (Fig. 2 C and not depicted). Contrary to this elevated CCR9 and CXCR3 expression, GPR18-deficient CD45.2+ IELs in mixed BM chimeras showed reduced migration to the CCR9 ligand, CCL25, and the CXCR3 ligand, CXCL10 (Fig. 2 D). However, they also had a significantly reduced baseline migration in the absence of chemokine (Fig. 2 D). When the fold change in migration compared with “nil” was determined, there was an increase in the relative CCL25 response of the Gpr18−/− cells (Fig. 2 D). The alterations in CD8αα γδT cell surface phenotype and migration behavior observed for Gpr18−/− cells from mixed BM chimeras (Fig. 2, C and D) were not seen for CD8αα γδT cells from Gpr18−/− mice (Fig. 2 D and not depicted). This may indicate that these phenotypes are secondary consequences of a role played by GPR18 in helping cells to compete for a maturation signal.

CCR9-deficient mice suffer a deficiency in CD8αα γδT IEL numbers (Wurbel et al., 2001, 2007; Uehara et al., 2002) that is more severe than observed in GPR18-deficient mice (Fig. 2 E and Fig. 1 C). Analysis of CCR9 GPR18 double-deficient mice showed a similar magnitude of CD8αα γδT IEL deficiency to that observed in Ccr9−/− mice (Fig. 2 E). These data suggest the function of CCR9 is dominant over the role of GPR18 in establishing an IEL compartment of normal size. However, in contrast to Gpr18−/− γδT IELs in mixed BM chimeras (Fig. 2 C), Ccr9−/− γδT IELs in mixed BM chimeras contained normal Vγ7+ cell frequencies (Fig. 2 F). These findings indicate that GPR18 has a function distinct from or in addition to any role it might have in supporting CCR9 function.

Analysis of cytokine production after in vitro activation of cells from mixed BM chimeras revealed similar IFN-γ expression by Gpr18−/− and internal control cells but elevated TNF production by the Gpr18−/− cells (Fig. 2 G). The TNF expression level was similar to that observed in Thy1hi WT cells (not depicted), suggesting that it was secondary to the
Analysis of spleen cells from mice reconstituted with GPR18-encoding versus control retrovirus–transduced BM showed that reporter-positive cells were present at similar frequencies in both groups, confirming that GPR18 does not influence the development of recirculating T cell populations (not depicted). However, within the intestine, each of the IEL subsets that were deficient in the absence of GPR18 was markedly rescued by GPR18 transduction (Fig. 3 A). This was evident both as a higher frequency of transduced (reporter positive) cells and an increase in their number to within twofold of the normal range (Fig. 3 B and Fig. 1, B and C). Moreover, the rescued CD8αα γδT cells down-regulated Thy1 to a similar extent as control cells (Fig. 3 C).

γυ7+ IELs are generated in the thymus and may undergo a final maturation process in mesenteric LNs (mLNs; Guy-Grand et al., 2013). Production of γυ7+ γδT cells in the thymus of mixed BM chimeras was not affected by GPR18 deficiency (Fig. 4 A and not depicted). The cells were also present in frequencies comparable with those of Gpr18−/− controls in the mLNs (Fig. 4 A and not depicted). To test whether homing of IELs from blood to intestine might require GPR18, a mixture of total IELs from GPR18-deficient (CD45.1/2) and WT (CD45.1) donors were transferred to γδT IEL-deficient (Ccr9−/− CD45.2) recipients. Although CD8αα IELs are nonrecirculatory and home inefficiently back to the small intestine after i.v. transfer (Hayday et al., 2001; Chennupati et al., 2010; Cheroutre et al., 2011), analysis at 1 d showed that Gpr18−/− cells were present among the transferred cells within the IEL compartment at a similar frequency to their representation in blood (Fig. 4 B). These data disfavor a role for GPR18 in promoting CD8αα IEL recruitment from blood into tissue. Given that GPR18 is thought to most likely respond to a small molecule ligand (Inoue et al., 2012), these findings are not unexpected as the step of lymphocyte recruitment from blood into tissue usually involves a protein (chemokine) ligand that can be displayed on the endothelium (Islam and Luster, 2012). CCR9 and CCL25 are established to play an important role in this recruitment step for CD8 T cells and plasma cells (Kunkel et al., 2003; Pabst et al., 2004; Steenstad et al., 2007; Wurbel et al., 2007), a requirement we could confirm for CD8 T cells that had been activated under CCR9-inducing conditions (Fig. 4 C).

CD8αα IELs are considered to be restricted to the intraepithelial compartment, and consistent with this view, the cells make up only a very minor component of standard lamina propria lymphocyte (LPL) preparations (Fig. 5 A; Cheroutre et al., 2011), and it has so far not been possible to determine their distribution in the lamina propria by immunofluorescence analysis. However, because our intravital imaging and that of Edelblum et al. (2012) suggested that CD8αα IELs occasionally access the lamina propria (Videos 1 and 2), we asked whether GPR18 differentially affected the frequency of CD8αα γδT cells in these compartments. Analysis of IEL and LPL preparations from mixed BM chimeras revealed that the fraction of CD8αα γδT and αβT IELs was more strongly reduced in the IEL compartment than within the effect of GPR18 deficiency on cell maturation state in competitive chimeras. To examine the IEL turnover rate, mixed BM chimeras were maintained on drinking water containing BrdU for 1 wk and then examined by flow cytometry. Similar fractions of control and Gpr18−/− cells were BrdU labeled (Fig. 2 H), suggesting that the reduced Gpr18−/− cell number was not a consequence of a markedly accelerated loss of IELs. Consistent with this conclusion, the fraction of apoptotic γδT IELs detected by annexin V staining was similar for the mutant and WT cells (Fig. 2 I).

To confirm that the deficiency in IELs was solely caused by a loss of GPR18 and not caused by altered expression of a linked gene or other off-target effects, GPR18 expression was rescued in Gpr18−/− BM by retroviral transduction.

Figure 4. Normal IEL precursor development and intestinal homing in the absence of GPR18. (A) Mixed BM chimeras of the type in Fig. 2 were analyzed for γυ7+ γδT cells in thymus and mLN. Thymic cells were gated as CD8−CD4−TCRγδ−γυTCRγυ− and mLN cells as TCRγδ−γυTCRγυγυ−, and the data are plotted as the ratio of gated cells that were CD45.2+ (Gpr18−/− or Gpr18+/+−) versus CD45.1/2+ (WT). (B) IELs from Gpr18−/− (CD45.1−) and Gpr18+/+− (CD45.1/2−) mice were co-transferred into Ccr9−/− recipients. 20 h later, the distribution of transferred CD8αα γδT IELs in blood (Bd) and intestine IELs was analyzed by flow cytometry. The plot on the right shows the ratio of Gpr18−/− versus Gpr18+/+− donor cell frequencies in blood and IELs, summarized from three experiments. (C) LN T cells from WT (CD45.1/2−) and Ccr9−/− (CD45.2−) mice were stimulated with CD3/CD28 plus retinoic acid and co-transferred into CD45.1− WT hosts. 20 h later, the distribution of transferred CD8 T cells in blood and IELs was analyzed by flow cytometry. Data are representative of three or more experiments in A and B and of two mice in C. In A and B each symbol represents an individual mouse, and the horizontal lines indicate the mean.
LPL compartment (Fig. 5 B). Reciprocally, in mice reconstituted with GPR18-tranduced $Gpr18^{-/-}$ BM, the reporter-positive CD8αα γδT cells were enriched in the IEL compared with the LPL compartment (Fig. 5 C). These observations suggest that GPR18 augments access of CD8αα γδT cells to, or retention within, the IEL compartment.

In summary, we establish that the orphan receptor, GPR18, is required for the normal homeostasis of CD8αα γδT and αβT IELs and CD8αβ IELs. Our intravital imaging helps resolve a discrepancy between two recent studies (Chennupati et al., 2010; Edelblum et al., 2012) by providing additional evidence that IELs are motile and that they do not remain fixed between one set of epithelial cells but travel between intraepithelial niches through a path that sometimes takes them into the lamina propria. Studies on other cell types, such as germinal center and marginal zone B cells (Allen et al., 2004; Arnon et al., 2011), indicate that for cells to move repeatedly between adjacent compartments, they need to respond to at least two GPCR ligands that are distributed unequally between the compartments. The only directional cue previously established to promote IEL positioning in the small intestine is CCL25 and its receptor CCR9, and at steady-state these studies only found effects on γδT IELs (Abadie et al., 2012; Islam and Luster, 2012). Based on our findings here, we suggest that GPR18 may respond to a ligand that is distributed in areas overlapping with but not identical to the distribution of CCL25 and that the receptor helps achieve fine control of IEL distribution within the small intestine. We suggest that by affecting the efficiency of access to currently imprecisely defined intestinal niches, GPR18 influences exposure of IELs to factors necessary for their maturation or trophic support and that the reduced ability to access these factors most strongly affects their numbers under conditions of competition. Strong competitive effects on cell numbers have been observed in other instances where trophic support is limited (e.g., Lesley et al., 2004; Thien et al., 2004). The altered maturation state may in turn be responsible for the reduced in vitro motility of the cells, an alteration which might amplify effects of GPR18 deficiency on cell positioning and homeostasis. It is notable that mice lacking IL15Rα or AHR have decreased CD8αα IELs but retain normal numbers of CD8αβ IELs (Lodolce et al., 1998; Ma et al., 2009; Li et al., 2011). The reduced competitiveness of GPR18-deficient CD8αβ as well as CD8αα IELs indicates GPR18 may be required for accessing factors in addition to or other than IL15 or AHR ligands or that it is instead required for retention of IELs in the intestine. We do not exclude the possibility that GPR18 transmits signals that have their own trophic or maturational influence on IELs. It will be important in future studies to define the nature of the GPR18 ligand and to study whether GPR18 and GPR18 ligand abundance are altered in disease states where γδT IEL numbers and distribution are affected, such as in inflammatory bowel disease and celiac disease (Cheroutre et al., 2011; Abadie et al., 2012).

Figure 5. Differential GPR18-deficient cell distribution in IEL and LPL compartments. (A) CD8αα cell frequency in IELs and LPLs by flow cytometry analysis. Percentages are shown as mean ± SD. (B) $Gpr18^{-/-}$ mixed BM chimeras of the type in Fig. 2 were analyzed for CD8αα T cells in IELs and LPLs. The ratios of $Gpr18^{-/-}$ versus WT were connected for each mouse. (C) Retrovirus-transduced $Gpr18^{-/-}$ BM chimeras of the type in Fig. 3 were analyzed for CD8αα T cells in IELs and LPLs. The ratios of Gpr18-transduced versus untransduced donor-derived cells were connected for each mouse. Data are representative of more than three experiments throughout.

MATERIALS AND METHODS

Mice. C57BL/6 (B6, CD45.2) and congenic B6 CD45.1+ mice were obtained from the Jackson Laboratory, and these strains were intercrossed to generate B6 CD45.1/2 F1 mice. CCR9-deficient mice (Uehara et al., 2002) were obtained from P. Love (National Institutes of Health, Bethesda, MD) and provided by E. Verdin (University of California, San Francisco [UCSF], San Francisco, CA). GPR18-deficient mice were generated by Ozgene Pty Ltd. using the Cre/loxP system. In brief, three DNA fragments (a 4-kb 5’ homology arm, a 1.4-kb floxed arm containing the single $Gpr18$ exon, and a 4-kb 3’ homology arm) were generated by nested PCR from C57BL/6 mouse genomic DNA and cloned into the pOzHI vector (Ozgene Pty Ltd.). The targeting vector was linearized and electroporated into B6-derived embryonic stem cells. Positive clones were screened and confirmed with Southern blot. Chimeras were bred to B6 mice, and germline transmission was confirmed by allele-specific PCR. Gpr18 floxed mice were intercrossed to actin-Cre transgenic mice to obtain Gpr18 germine deleted mice. To generate BM chimeras, CD45.1+ B6 mice were irradiated by exposure to 1,100 rd of γ-irradiation in two doses 3 h apart and i.v. injected with 2 × 10⁶ total BM cells from CD45.1/2 WT plus 2 × 10⁶ total BM cells from CD45.2 mice of each genotype as indicated ($Gpr18^{-/-}$, $Gpr18^{-/-}$, or $Ccr9^{-/-}$) and analyzed after 2–3 mo. All chimeras appeared healthy at the time of analysis. Although the input cells were mixed at a 1:1 ratio, the reconstitution efficiencies of the different donor BMs were not always identical, a common occurrence in mixed BM chimera studies. Animals were housed in a specific pathogen-free environment in the Laboratory Animal Research Center at the UCSF and all experiments conformed to ethical principles and guidelines approved by the UCSF Institutional Animal Care and Use Committee.
Cell preparations, adoptive transfer, and migration assays. Thymocyte, splenocyte, and LN cell suspensions were prepared by meshing the organs through 70-µm cell strainers. IELs and LPLs were isolated as described previously (Jiang et al., 2013), with modifications. In brief, Peyer's patches were removed, and then the small intestine was opened longitudinally and washed with PBS containing 0.1% BSA, 100 U/ml penicillin, and 100 µg/ml streptomycin three times. The intestines were then resuspended in prewarmed DMEM containing penicillin, streptomycin, and 5% FCS for 30 min at 225 rpm, 37°C. Supernatants were removed, and then the small intestine was harvested and further transferred into WT recipients. Transwell migration assays were performed as described previously (Ngo et al., 1998) using 10° IELs prepared by the Percoll density gradient method above. CCL25 and CXCL10 were obtained from BioLegend; CXCL12 was obtained from PeproTech; N-arachidonoyl-glycine and 2-arachidonoyl-glycerol were obtained from Enzo Life Science and Sigma-Aldrich, respectively.

Antibodies and flow cytometry. Cells were stained using standard procedures for surface markers. The following monoclonal antibodies were used for flow cytometry: TCRγδ+ (GL3; BD or BioLegend), TCRβ (H57; BioLegend), CD4 (GK1.5; BioLegend), CD8α (S3.6.7; Tonbo Bio), CD8β (H535; ebioscience), Thy1.2 (30-H12; BD), Granzyme B (GB11; Invitrogen), CD45.1 (A20; BioLegend), and CD45.2 (104; BioLegend). Vγ7 antibody was provided by P. Pereira (Institut Pasteur, Paris, France). CD8α+ cells were gated as CD8α+CD8β−. For cytokine analysis, freshly isolated IELs were stimulated with 5 µg/ml collagenase type II (Worthington Biochemical Corporation), 0.1 mg/ml DNase I (Sigma-Aldrich), and 10% FCS at 175 rpm, 37°C for 225 rpm, 37°C. Supernatants were separated on a 30–40–80% Percoll density gradient (GE Healthcare), and the cells that layered between the 40–80% fractions were collected as IELs. After IEL isolation, tissues were shaken in RPMI 1640 containing 100 U/ml IL-2 and 100 ng/ml retinoic acid. At day 5, cells were harvested and transferred into WT recipients. Transwell migration assays were performed using 5-µm transwells and were performed as described previously (Ngo et al., 1998) using 10° IELs prepared by the Percoll density gradient method above. CCL25 and CXCL10 were obtained from BioLegend; CCLX12 was obtained from PeproTech; N-arachidonoyl-glycine and 2-arachidonoyl-glycerol were obtained from Enzo Life Science and Sigma-Aldrich, respectively.

Immunofluorescence. Cryosections of 7 µm were fixed and stained as previously described (Wang et al., 2011) with the following first antibodies: Laminin (Invitrogen), CD8α (S3.6.7; Tonbo Bio), TCRγδ+ (GL3; BD or BioLegend), and E-cadherin (GG3A; BD). Images were all acquired with an Axios Observer Z1 microscope (Carl Zeiss).

Intravitreal two-photon microscopy. Mice were i.v. injected with 10 µg anti-CD86-PE (BioLegend) 5 h before imaging. After anesthesia, mice were i.v. injected with Hoechst 33342 dye (Invitrogen), and the distal duodenum was exposed and opened along the antimesenteric border, as described previously (Edelblum et al., 2012). The mucosal surface was placed against a coverslip bottom of a 3D-printed cassette containing PBS. Images were acquired with ZEN2012 (Carl Zeiss) using a 7MP two-photon microscope (Carl Zeiss) equipped with a Chameleon laser (Coherent). Excitation wavelength was 880 nm. Images were acquired by taking 21-µm Z-stacks at 3-µm steps every 20 s. Each XY plane spans 512 × 512 µm². Videos were made and analyzed with Imaris 7.4 ×64 (Bitplane).
SUPPLEMENTAL MATERIAL

Wang et al., http://www.jem.org/cgi/content/full/jem.20140646/DC1

Video 1. Real-time imaging of CD8α⁺ IEL migration in Gpr18⁺⁻ duodenum. This video is a 25-min time-lapse sequence of 9-µm Z-projection images. CD8α⁺ cells are shown in red and nuclei in blue. The epithelium surrounding the six villi in the projection image can be identified by the uniform lines of labeled nuclei. The nuclei within the interior of the villi help identify the lamina propria. Note the frequent movement of CD8α-PE⁺ IELs between and beneath the epithelial cells. The two tracks show examples of the occasional migration of IELs into the lamina propria. Some of the CD8α-PE label in the lamina propria may correspond to CD8-independent capture of the antibody by resident cells such as macrophages.

Video 2. Real-time imaging of CD8α⁺ IEL migration in Gpr18⁻⁻ duodenum. This video is a 25-min time-lapse sequence of 9-µm Z-projection images. CD8α⁺ IELs are shown in red and nuclei in blue. The two tracks show examples of the occasional migration of IELs into the lamina propria. The different colors of the tracks correspond to the different time points in the video that the track started. Additional details as for Video 1.