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not Th1 cells are predominant in colitis developed with 
IFN- KO CD45RBhi cells. In conclusion, these results 
suggested that the absence of IFN- or high expression of 

CD45RBhi T cells compared with the corresponding WT cells 
(Fig. S7 C). In contrast, Th17 cytokines such as IL-22, IL-17A, 
and IL-17F were highly elevated, suggesting that Th17 but 

Figure 8.  Intestinal pathology induced by CD25CD45RBlo T cells is dependent on T cell–derived IL-22. CD4+CD25CD45RBlo (Treg cell–depleted 
CD45RBlo) cells from C57BL/6 (WT) or Il22/ mice (IL-22 KO) were adoptively transferred into Rag1 KO mice. (A) Percent change from initial mouse 
weight 13 wk after cell transfer. (B) Selected images from endoscopic colonoscopies performed on the mice at 13 wk after transfer (left) and endoscopic 
colitis scores (right). (C) Graph represents colon length at 14 wk after transfer. (D) Colon tissue sections were examined by hematoxylin and eosin staining. 
Shown are representative colon tissues. Colon sections were scored according to the Materials and methods for chronicity (top) and disease activity  
(bottom). The boxed areas are shown at higher magnification on the right. Bars: (left) 1,000 µm; (right) 400 µm. (E) mRNA levels of different cytokines in 
the distal colon of the mice. (F) mRNA levels of the indicated IL-22–regulated genes. Each dot represents one mouse; horizontal bars indicate the mean. 
Results are representative of two experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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T cells is functional after IL-10 stimulation as Stat3 phos-
phorylation occurs both in CD45RBhi and CD45RBlo CD4+ 
T cells (Fig. S1). Together, these results suggested the existence 
of functional IL-10 signaling in mouse CD4 T cells.

The adoptive transfer model has been frequently used as a 
model of colitis, which resembles some features of Crohn’s 
disease. It has been shown previously that nTreg cells could 
protect against colitis induced by CD45RBhi CD4 T cells, and 
it was also found that IL-10 is not required for this suppres-
sion (Asseman et al., 2003). Interestingly, however, normal 
mice that received anti–IL-10R antibody developed colitis 
(Asseman et al., 2003), which suggested that cells other than 
CD45RBhi and nTreg T cells may participate in the develop-
ment of colitis. Our current results are in line with these find-
ings and suggest that Treg cell–depleted CD4+ CD45RBlo  
T cells are responsible for colitis under conditions where IL-10 
is neutralized. In addition, TG Treg cell–depleted CD4+ 
CD45RBlo T cells are not well controlled by nTreg cells in 
vivo and in vitro in the presence of IL-23 (Figs. 3 and 4). Thus, 
blockade of IL-10 signaling might render Treg cell–depleted 
CD45RBlo CD4 T cells resistant to suppression by nTreg cells 
and thus make recipient Rag1 KO mice susceptible to colitis.

The Treg cell–depleted CD4+ CD45RBlo T cell population 
also contains IL-10–producing T cells, and it would therefore 
also be possible that blockade of IL-10 signaling led to a re-
duced number of IL-10–secreting cells. However, we could 
not find a significant difference in IL-10–producing cells upon 
transfer of Treg cell–depleted CD4+ CD45RBlo T cells into 
Rag1 KO mice (WT, 1.4 ± 0.34% vs. TG, 2 ± 0.3%), indicat-
ing that IL-10 signaling is dispensable for the generation of 
IL-10–producing T cells, which is in line with a previous pub-
lication (Maynard et al., 2007). Since the preparation of this 
manuscript, an interesting manuscript was published that showed 
that IL-10 inhibits the function of nTreg cells by repressing Foxp3 
expression (Murai et al., 2009). Therefore, IL-10R KO Treg 
cells were not able to suppress CD4+ CD45RBhi T cells upon 
transfer into an immune-deficient host (Murai et al., 2009). 
The results in our model are primarily directed at an additional 
inhibitory function of IL-10 on the pathogenic effector/mem-
ory cells. In contrast to the study by Murai et al. (2009), we 
could not find any defect in the suppressive capacity of nTreg 
cells with blocked IL-10 signaling in vivo or in vitro. Differ-
ences in the mouse model used may account for these differ-
ent results. Additionally, current publications suggest a major 
role of the microbial milieu for the development of colitis 
(Round and Mazmanian, 2009; Nell et al., 2010), and there-
fore differences in the microbial milieu in the different animal 
facilities might also contribute to our different result.

Throughout our analysis, we also found that CD45RBhi 
cells and Treg cell–depleted CD45RBlo CD4+ T cells exhibit 
different characteristics when adoptively transferred into Rag1 
KO mice (Fig. S8). CD45RBhi cells proliferate more aggressively 
(Fig. S4 B) and induce colitis faster than Treg cell–depleted 
CD45RBlo cells. Additionally, the CD4 T cell effector response 
found in colitis developed by CD4+ CD45RBhi T cells was 
characterized by increased Th1 cytokines compared with Treg 

Th17 cytokines might result in less destruction of epithelial 
architecture but instead may lead to mucosal hyperplasia of 
the colon epithelium.

DISCUSSION
In this study, we have analyzed the role of IL-10 signaling in 
CD4 T cells by generating dominant-negative IL-10R TG 
mice. Our results indicated that direct IL-10 signals control 
colitis development, in particular when caused by the Treg 
cell–depleted CD45RBlo memory/effector CD4 T cell pop-
ulation. This has also spotlighted characteristic differences in 
the mechanism of colitis development mediated by CD45RBhi 
cells or Treg cell–depleted CD45RBlo CD4+ T cells.

It was previously reported by others that activation could 
reduce the expression of IL-10R1 (IL-10R) mRNA in 
human T cell clones (Liu et al., 1994). We found that although 
expression of mouse IL-10R is reduced upon activation, it 
recovered after 24–48 h both at the level of mRNA (not de-
picted) and cell surface protein expression (Fig. S1). In addition, 
the surface expression of IL-10R is detectable at any time of 
activation by flow cytometry. The IL-10R on the surface of 

Figure 9.  IL-22 promotes cell proliferation in the colon. 
CD4+CD25CD45RBlo (Treg cell–depleted CD45RBlo) cells from C57BL/6 
(WT) or Il22/ (IL-22 KO) mice were adoptively transferred into Rag1 KO 
mice. At 14 wk after transfer, 4 h before euthanization, mice were injected 
with BrdU. Colon sections were stained by immunohistochemistry with an 
antibody to BrdU. (A) Selected micrographs from two individual mice. 
Bars: (left) 250 µm; (right) 50 µm. (B) Quantification of the mean number 
of BrdU+ cells per field for the sections in A. (C) Colonic tissue sections 
were also subjected to TUNEL staining. TUNEL+ cells per crypt were quan-
tified. Each dot represents one mouse; horizontal bars indicate the mean 
(BrdU: WT, n = 10; and KO, n = 10; TUNEL: WT, n = 7; and KO, n = 8).  
Results were confirmed twice using BrdU and Ki67 staining of colon epi-
thelial cells and flow cytometry (shown in Fig. S6). **, P < 0.01.

http://www.jem.org/cgi/content/full/jem.20102149/DC1
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has been reported to have dual proinflammatory and anti-
inflammatory functions. IL-22 is required for skin inflamma-
tion and thickening in the IL-23–dependent model of psoriasis 
(Zheng et al., 2007; Ma et al., 2008), whereas it is protective 
in a hepatitis model (Zenewicz et al., 2007). The hyperprolif-
erative pathology in psoriasis is comparable with the similar 
outcome in the Treg cell–depleted CD45RBlo model. In con-
clusion, our results suggest that overproduction of IL-22, which 
is the case in the Treg cell–depleted CD45RBlo colitis model, 
results in epithelial hyperplasia, which causes greater intestinal 
pathology and weight loss. However, we found that IFN- is 
also decreased in the absence of T cell–derived IL-22 in the 
Treg cell–depleted CD45RBlo colitis model, and we therefore 
cannot exclude a possible contribution of IFN- to the 
pathogenesis in these settings. Further investigation on how 
this dual functionality of IL-22 is achieved should be eluci-
dated and will lead to a better understanding of IBD. Our re-
sults also point to the complexity of using IL-22 antagonism 
or agonism in the therapy of inflammatory diseases.

In summary, our findings point to a fundamental differ-
ence in the pathological mechanisms that underlie colitis in-
duced by CD45RBhi and Treg cell–depleted CD45RBlo CD4+ 
T cells, as the latter requires direct IL-10 signaling to be regu-
lated by nTreg cells. It is noteworthy that human Crohn’s dis-
ease may well result from the action of memory/effector (Treg 
cell–depleted CD45RBlo) T cells rather than or as well as 
CD45RBhi CD4+ T cells. In any event, we believe that this 
new model for IBD provides a useful additional alternative to 
the already existing portfolio of IBD models, and further in-
vestigation of this model might contribute to the search for a 
cure or better treatment of human IBD.

MATERIALS AND METHODS
Mice and reagents. C57BL/6 mice and CD45.1 mice were purchased 
from the National Cancer Institute. IL-10, IFN-, and Rag1 KO mice were 
obtained from the Jackson Laboratory. Foxp3 knockin reporter (FIR) mice 
(Wan and Flavell, 2005), IL-17A KO (Nakae et al., 2002), and IL-22 KO 
(Zenewicz et al., 2007) mice have been described previously. Our Rag1 KO 
colony tested PCR positive for Helicobacter hepaticus (Shames et al., 1995). All 
animal procedures were approved by the Institutional Animal Care and Use 
Committee of Yale University. Recombinant IL-10 and antibodies to IL-10R, 
B220, CD4, CD8 CD11b, and CD11c were purchased from BD.

Generation of CD4dnIL-10R mice. The mouse IL-10R gene frag-
ment truncated at proline 265 just beneath the transmembrane region was 
cloned by PCR from cDNA generated from mouse B cell mRNA. The 
primer of this reaction was flanked with SalI sites, and the fragment was sub-
cloned into the SalI site of plasmid CD4 promoter vector p37.1 (Gorelik and 
Flavell, 2000). The truncated form of IL-10R has 10 residues of read 
through amino acids at the carboxy terminal, which derive from the vector 
sequence before a termination codon. To generate TG mice, the CD4dnIL-
10R fragment containing CD4 promoter, IL-10R, and polyadenylation 
sequence was excised by NotI, purified, and injected into (C57BL/6xC3H)F1-
fertilized eggs. Founder mice were identified using PCR and backcrossed at 
least 12 times onto the C57BL/6 background for further experiments.

Western blot. For the analysis of Stat3 phosphorylation, total cell lysates of 
the indicated cell populations were separated on a 10% SDS gel, transferred 
to a polyvinylidene fluoride membrane (Millipore) and probed with anti–
phospho-Stat3 (Tyr705) antibody (Cell Signaling Technology). The membrane 

cell–depleted CD4+ CD45RBlo T cell–induced colitis, which 
was characterized more by Th17 cytokines. The blockade of 
IL-10 signaling selectively affected the Treg cell–depleted 
CD45RBlo T cells, rendering them more pathological and 
enabling them to escape from control by nTreg cells. We also 
analyzed whether IL-10 inhibits the in vitro differentiation of 
naive T cells into Th17. However, we could not find any sig-
nificant inhibitory effect of IL-10 on the mRNA expression 
of Rorc, the gene encoding ROR-t, or on the frequency of 
IL-17A–producing T cells generated from naive CD4T cells. 
In contrast, we found that IL-10 decreased, in a dose-dependent 
manner, the mRNA expression of Rorc but not Tbx21, the 
gene encoding T-bet, in IL-23–stimulated CD45RBlo T cells 
in vitro (Fig. 7). These data strengthen our in vivo data and 
suggest again that IL-10 is particularly important to control 
the antigen-experienced inflammatory cells.

Histologically, the CD45RBhi colitis model was charac-
terized by ulceration, in contrast to the Treg cell–depleted 
CD45RBlo colitis model, which instead showed epithelial hy-
perplasia and thickening of the mucosa. IL-22 was found to 
be protective in the CD45RBhi colitis model (Zenewicz et al., 
2008) as well as in an ulcerative colitis model (Sugimoto et al., 
2008) and to ameliorate inflammation during colon infection 
(Zheng et al., 2008). However, in contrast, in this study, we 
found a pathogenic role of this cytokine in the colitis model 
induced by Treg cell–depleted CD4+ CD45RBlo T cells.

High Th1 cytokines such as IFN- in the colon might be 
toxic to the colonic epithelium and might exacerbate disease, 
leading to the epithelial erosion and ulceration that character-
izes the CD45RBhi model. Our finding that colitis induced 
with T cells from IFN- KO mice showed less epithelial 
damage supports this hypothesis. In line with this idea, we 
found that IL-17A KO CD45RBhi CD4+ T cells cause more 
severe disease upon transfer into Rag1 KO recipients compared 
with WT. Interestingly, this was associated with increased 
IFN-–producing T cells and more severe ulceration in the 
mice receiving WT cells (O’Connor et al., 2009). In this con-
text, it is possible that Th17 cytokines like IL-22 might protect 
the epithelium in the presence of Th1 cytokines. In contrast, 
in the Treg cell–depleted CD45RBlo CD4+ T cell adoptive 
transfer, IFN- expression in the colon was lower and Th17 
cytokine mRNA levels, including IL-22 expression, were higher 
than in CD45RBhi model.

As the colonic epithelia were hyperplastic and the muco-
sal layer thickened in the Treg cell–depleted CD45RBlo trans-
fer model, the Th17 cytokine environment might be involved 
in the regeneration of epithelial cells. IL-22 might act on epi-
thelial cells to promote proliferation or survival (Pickert et al., 
2009). This seems to be beneficial in the CD45RBhi model 
through repair or prevention of epithelial erosion and ulcer-
ation. The observation that IL-22 KO Treg cell–depleted 
CD45RBlo T cells showed milder intestinal pathology and 
less hyperplasia of the epithelia supports the hypothesis that, 
in contrast, IL-22, by precisely the same mechanism, might 
also lead to epithelial hyperproliferation and therefore could 
play a pathogenic role. Accordingly, in the literature, IL-22 
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to severe epithelial hyperplasia and mucin depletion; grade 4, marked inflam-
matory cell infiltrates that were often transmural and associated with crypt 
abscesses and occasional ulceration, with marked epithelial hyperplasia,  
mucin depletion, and loss of intestinal glands. For the IL-22 experiments, 
chronicity (the degree of chronic inflammation) and activity (degree of epi-
thelial injury) were scored separately.

Quantitative PCR. RNA was extracted with TRIZOL reagent, and cDNA 
was synthesized by Superscript II reverse-transcriptase according to the man-
ufacturer’s protocols (Invitrogen). The real-time PCR system (model 7500; 
Applied Biosystems) was used for quantitative PCR. The sequence of the 
probe to detect IFN- was 5-FAM-TTTGAGGTCAACAACCCACAG
GTCCA-BHQ-1-3with the primers, 5-CCTTTTCCGCTTCCTG
AGG-3 and 5-CTGGTGAAAAGGACCTCTCG-3. The primer probe 
sets for IL-10R (Mm00434151_m1), IL-17A (Mm00434291_m1), 
IL-17F (Mm00521423_m1), IL-22 (Mm00444241_m1), and G-CSF 
(Mm00438334_m1) were purchased from Applied Biosystems. Hypoxan-
thine phosphoribosyltransferase (HPRT) was used as an internal reference 
and measured with the primers 5-CTGGTGAAAAGGACCTCTCG-3 
and 5-TGAAGTACTCATTATAGTCAAGGGCA-3 with the TaqMan 
probe 5-FAM-TGTTGGATACAGGCCAGACTTTGTTGGAT-BHQ-1-3. 
Relative expression of cytokines normalized to HPRT was calculated using 
the Ct method. The relative fold changes of expression are presented, 
where control samples are set to an expression index of 1.

Statistical analysis. Survival rate was analyzed by logrank test, and histol-
ogy score was determined by the Mann-Whitney U test. Other data were 
analyzed by the Student’s t test.

Online supplemental material. Fig. S1 shows expression of IL-10R in 
murine CD4 T cells. Fig. S2 shows that IL-6–mediated Stat3 activation is not 
abrogated in TG CD4 T cells. Fig. S3 characterizes the TG Foxp3CD45RBlo 
cells before adoptive transfer. Fig. S4 shows the competitive adoptive trans-
fer of WT and TG CD45RBhi or CD25CD45RBlo cells into Rag1 KO 
mice. Fig. S5 shows that induction of colitis by CD25CD45RBlo cells 
is dependent on T cell–derived IL-22 but not IL-17A. Fig. S6 shows in-
creased epithelial cell proliferation in Rag1 KO mice receiving IL-22 KO 
CD25CD45RBlo cells using flow cytometry. Fig. S7 characterizes colitis 
induced by the transfer of IFN- KO CD45RBhi T cells into Rag1 KO 
mice. Fig. S8 is a summary of the colitis developed by CD45RBhi and Treg 
cell–depleted CD45RBlo T cells. Online supplemental material is available at 
http://www.jem.org/cgi/content/full/jem.20102149/DC1.
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