A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas

Sameer Agnihotri,1 Amparo Wolf,1 Diana M. Munoz,1 Christopher J. Smith,1 Aaron Gajadhar,1 Andres Restrepo,1 Ian D. Clarke,1 Gregory N. Fuller,5 Santosh Kesari,6 Peter B. Dirks,1 C. Jane McGlade,1 William L. Stanford,2 Kenneth Aldape,5 Paul S. Mischel,7 Cynthia Hawkins,3 and Abhijit Guha1,4

1The Arthur and Sonia Labatt’s Brain Tumor Research Centre, The Hospital for Sick Children’s Research Institute, 2Institute of Biomaterials and Biomedical Engineering, 3Division of Pathology, the Hospital for Sick Children, and 4Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto M5A 2N4, Ontario, Canada 5Department of Neuropathology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030 6Moores Cancer Center, University of California, San Diego, San Diego, CA 92093 7Department of Neuropathology, University of California, Los Angeles, Los Angeles, CA 90095

Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethyl- ation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neoplasms, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor–initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21^{CIP1}, independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies.
GATA4 represses astrocytoma formation | Agnihotri et al.

The GATA family of transcription factors consists of six members, with two conserved zinc finger domains that recognize the consensus DNA binding motif of \((A/T)/GATA/(A/G)\) (Molkentin, 2000). They regulate biological functions, including organogenesis, differentiation, proliferation, and apoptosis (Kuo et al., 1997; Charron et al., 1999; Koutsourakis et al., 1999; Holtzinger and Evans, 2005; Kobayashi et al., 2006; Watt et al., 2007), but their roles in the normal and transformed human central nervous system (CNS) remain in large part unknown.

Our interests have focused on GATA4 and GATA6 because we observed no significant alterations in GATA5 expression between normal brain and HGAs. We have previously reported on the expression profile of GATA6 in the CNS (Kamnasaran and Guha, 2005) and recently reported GATA4 expression in normal embryonic and adult mouse and human astrocytes, in which it functions as an inhibitor of proliferation and inducer of apoptosis (Agnihotri et al., 2009). GATA4 knockout mice are embryonic lethal (embryonic day [E] 7.5–8.5) as a result of cardiac defects (Kuo et al., 1997; Pehlivan et al., 1999; Reamon-Buettner et al., 2007), and GATA4 mutations cause Holt-Oram syndrome and congenital heart defects. GATA4 is frequently silenced in lung, colon, prostate, ovarian, and breast cancer (Akiyama et al., 2003; Guo et al., 2004, 2006; Caslini et al., 2006; Hua et al., 2009), but its exact role in cancer biology and the mechanisms by which it operates are poorly understood. Given the role of GATA4 in regulating astrocyte proliferation and the observed loss of GATA4 in several human cancers, in this study we demonstrate GATA4 to be a novel tumor suppressor in GBM, and we identify novel mechanisms of tumor suppression regulated by GATA4.

Toward this goal, several approaches have been undertaken, including recent genome-wide sequencing approaches, which have pointed to a large number of novel and known genetic alterations present in GBMs (Cancer Genome Atlas Research Network, 2008; Parsons et al., 2008; Verhaak et al., 2010). These large-scale studies involving human samples, although very informative, still require vigorous evaluation of the functional significance of these alterations.

To identify novel loss of function alterations involved in astrocytoma progression, we used a retroviral-mediated gene-trap mutagenesis screen on nontransformed \(GEAP^{V12}\text{-Ha-Ras}^{-}\)expressing astrocytes isolated from a genetically engineered mouse model (GEM), which are born normal but develop low-grade astrocytomas (LGAs) and high-grade astrocytomas (HGAs) which when characterized are similar to their human counterparts (Ding et al., 2001). Using this approach, we identified that disruption of GATA6 led to transformation and demonstrated that GATA6 is a new and relevant human GBM tumor suppressor gene (TSG; Kamnasaran et al., 2007). This furthered our interest on the GATA transcription factors, specifically the GATA4/5/6 subfamily. The GATA family of transcription factors consists of six members, with two conserved zinc finger domains that recognize the consensus DNA binding motif of \((A/T)/GATA/(A/G)\) (Molkentin, 2000). They regulate biological functions, including organogenesis, differentiation, proliferation, and apoptosis (Kuo et al., 1997; Charron et al., 1999; Koutsourakis et al., 1999; Holtzinger and Evans, 2005; Kobayashi et al., 2006; Watt et al., 2007), but their roles in the normal and transformed human central nervous system (CNS) remain in large part unknown.

Our interests have focused on GATA4 and GATA6 because we observed no significant alterations in GATA5 expression between normal brain and HGAs. We have previously reported on the expression profile of GATA6 in the CNS (Kamnasaran and Guha, 2005) and recently reported GATA4 expression in normal embryonic and adult mouse and human astrocytes, in which it functions as an inhibitor of proliferation and inducer of apoptosis (Agnihotri et al., 2009). GATA4 knockout mice are embryonic lethal (embryonic day [E] 7.5–8.5) as a result of cardiac defects (Kuo et al., 1997; Pehlivan et al., 1999; Reamon-Buettner et al., 2007), and GATA4 mutations cause Holt-Oram syndrome and congenital heart defects. GATA4 is frequently silenced in lung, colon, prostate, ovarian, and breast cancer (Akiyama et al., 2003; Guo et al., 2004, 2006; Caslini et al., 2006; Hua et al., 2009), but its exact role in cancer biology and the mechanisms by which it operates are poorly understood. Given the role of GATA4 in regulating astrocyte proliferation and the observed loss of GATA4 in several human cancers, in this study we demonstrate GATA4 to be a novel tumor suppressor in GBM, and we identify novel mechanisms of tumor suppression regulated by GATA4.

Figure 1. GATA4 loss in GBM. (A) Loss of Gata4 observed in primary astrocyte cultures from transgenic mice bearing GBM tumors at 3 mo (RasB8 P3) compared with primary astrocyte cultures from healthy newborn pups RasB8 P0 and astrocyte cultures from newborn or adult healthy WT mice NMA. (B) Immunoblotting of GATA4, GATA5 in human GBM cell lines with NHB, NHAs, and immortalized NHAs with telomerase (NHA + hTERT) used as positive controls. (C and D) Immunohistochemical analysis of GATA4 in normal brain \(n = 10\), positive control), low grade gliomas \(n = 29\); C), and GBM operative specimens \(n = 163\); D), with corresponding H&E stains. (E) Survival curve analysis of GATA4-positive and -negative GATA4 GBM patients (Log-Rank test, \(P = 0.01\)). Bars: (C) 20 µm; (D) 50 µm. Western blots were performed in triplicate.
specimens (Fig. 1, C and D). The specificity of the anti-GATA4 antibody was tested using confirmed GBM tissue that did not express GATA4 at the transcript or protein level (Fig. S1 A). Tissue microarray analysis of primary GBM linked with survival data (Cloughesy et al., 2008; Guo et al., 2009; n = 43, primary GBM) demonstrated poorer overall survival in patients with loss of GATA4 expression, compared with patients with GATA4 expression (Fig. 1 E; P = 0.01, Log-rank test). In summary, GATA4 loss is observed in a majority of human GBM lines and operative samples.

Promoter methylation and somatic mutations silence GATA4 expression

To establish the etiology of GATA4 loss in human GBMs, we first determined whether there was epigenetic silencing by hypermethylation of the GATA4 promoter, as demonstrated in lung and colon cancer (Akiyama et al., 2003; Guo et al., 2004; Hellebrekers et al., 2009). The 1,200-bp GATA4 proximal
promoter has two dense CpG islands, which are sites of increased methylation (Fig. 2 A). Methylation-specific (MSP) PCR, which is able to differentiate nonmethylated and methylated products of the GATA4 promoter, demonstrated that the methylated product was amplified from all human GBM lines lacking GATA4 expression (Fig. 2 A). In contrast, normal human brain (NHB) and NHA had predominantly the nonmethylated product (Fig. 2 A). Treatment of several GBM lines with 5-aza-2’-deoxycytidine, an inhibitor of DNA methyltransferases, restored GATA4 protein expression (Fig. 2 B). We next performed MSP-PCR on bisulfite-treated DNA isolated from GBM operative samples lacking GATA4 at the transcript level (Fig. S1 B). 13/20 of these GATA4-negative samples had a methylated product amplify using MSP-PCR (Fig. S1 C). To further validate GATA4 promoter methylation, bisulfite sequencing, which has increased sensitivity compared with MSP-PCR, was used to analyze 36 CpG islands in the GATA4 promoter (Fig. 2 C). GBM MSP-PCR, was used to analyze 36 CpG islands in the GATA4 promoter region as measured by soft agar assay (Fig. S3, A–C). This transformation synergy was not restricted to activated Ras because NHA + hTERT immortalized astrocytes expressing E6/E7 oncoproteins (to inhibit both TP53 and RB pathways) were also transformed in vitro by shRNA-mediated GATA4 knockdown (Fig. S3, A–C). To further test our postulate, we generated two stable GATA4 shRNA NHA + hTERTs lines (nontransformed astrocytes expressing GAF and no NESTIN), which resulted in increased proliferation but non transformation as measured by soft agar assay (Fig. S3 D and not depicted). However, in combination with V12Ha-Ras, to mimic aberrantly expressed Ras in GBM through NE40 loss or aberrant receptor activation (TCGA network, 2008), we observed that loss of GATA4 promoted not only proliferation but also growth in soft agar (Fig. 3 A and Fig. S3 E, P = 0.0001). This tumorigenic phenotype of the NHA–V12Ha-Ras–GATA4 shRNA1 cells was rescued by expressing GATA4 cDNA lacking part of the 3’UTR to which the shRNA1 was directed against (Fig. 3 A and Fig. S3 E, P = 0.001).

NHA–V12Ha-Ras–GATA4 shRNA1 cells were then injected intracranially into NOD-SCID mice (n = 5) with NHA–V12Ha-Ras–GATA4 scrambled shRNA cells as controls. The control cell–injected mice survived without any tumors when evaluated at 60 d, which is consistent with the nontumorigenic phenotype previously reported for NHA–V12Ha-Ras cells (Sonoda et al., 2001; Fig. 3 B, top left). In contrast, mice injected with NHA–V12Ha-Ras–GATA4 shRNA1 cells formed tumors (5/5) and died from HGAs by 31 ± 7 d (Fig. 3 B, all except top left). The HGAs had elevated Ki-67 index and cyclin D1 (CCND1) expression and reduced expression of the cell cycle inhibitor P21(CIP) (Fig. 3 B). These tumors did not express the differentiated astrocyte marker GFAP but had increased levels of nestin, a marker for neural progenitor cells which is highly expressed in human GBMs (Fig. 3 B, middle row; left and middle). Primitive neuroectodermal tumors (PNETs) also lack GFAP expression but express high nestin levels, but the tumors were not PNET based on tumor morphology and lack of the pNET/neural markers NeuN and Synaptophysin (Fig. S3 F). GFAP immunohistochemistry (IHC) analysis of 47 GBMs (serial sections of GBMs stained for GATA4 in Fig. 1 D) demonstrated that loss of GATA4 was associated with loss of GFAP (Fig. S5, A and B, P = 0.0087, Fisher’s exact test). In addition, GATA4 protein was enriched in GFAP promoter by chromatin immunoprecipitation (ChIP) analysis (Fig. S5 C).
GATA4 suppresses GBM transformation in vitro and in vivo

Because loss of GATA4 promoted transformation of NHAs, we hypothesized that reexpression of GATA4 in GBM cells could reverse the transformed phenotype. To test this hypothesis, four human GBM lines of various genetic alterations (Fig. S4 A, summary of alterations) were transiently transfected to express GATA4 under the CMV promoter (Fig. 4, A and B). GATA4 expression reduced proliferation in all four GBM lines as measured by BrdU incorporation, with accumulation of cells in G1 phase of cell cycle (Fig. 4 A and Fig. S4 B). We also silenced GATA4 expression in SNB-19 cells, the only human GBM cells we tested that endogenously express GATA4 (Fig. 1 B). SNB-19 cells, have a slow proliferation rate comparable with that of NHAs. Silencing of GATA4 in these SNB-19 cells increased proliferation rates similar to U87 and T98G cells, which do not express any endogenous GATA4 (Fig. S4 F).

GATA4 expression in the four GBM cells tested without endogenous GATA4 expression resulted in reduced cyclin...
expressing HA-tagged ubiquitin (HA-UB). Only under GATA4-expressing conditions was HA-UB directly incorporated into CCND1 (Fig. S4 E). The change in CCND1 and P21CIP1 protein levels corresponded with reduced cell proliferation and a significant increase of cells in the G1 phase of cell cycle (Fig. 4 D and Fig. S4 C). To determine whether direct loss of CCND1 and/or overexpression of P21CIP1 resulted in the same phenotype as exogenous GATA4 expression, these alterations were introduced in T98G cells. Similar to exogenous GATA4, reduction of CCND1 or induction of P21CIP1 led to a significant decrease in proliferation, which was comparable to expression of GATA4 alone (Fig. 5, A and B; ANOVA, P < 0.01). However, only GATA4-expressing T98G cells were sensitized to cell death when exposed to temozolomide, a standard chemotherapeutic in GBM treatment (Fig. 5 C).

We next generated a stable U87 GBM cell line expressing GATA4 under a doxycycline-inducible promoter (Fig. 4 C). Induction of GATA4 by doxycycline attenuated levels of cyclin D1 with induction of P21CIP1 (Fig. 4 C). Decreased expression of CCND1 by GATA4 was not at the transcriptional level but through increased ubiquitination by the 26s proteosome (Fig. S4D), as it was reversed by the proteosomal inhibitor MG132. Furthermore, to determine direct ubiquitination of CCND1, U87 cells were transfected with an expression plasmid expressing HA-tagged ubiquitin (HA-UB). Only under GATA4-expressing conditions was HA-UB directly incorporated into CCND1 (Fig. S4 E). The change in CCND1 and P21CIP1 protein levels corresponded with reduced cell proliferation and a significant increase of cells in the G1 phase of cell cycle (Fig. 4 D and Fig. S4 C). To determine whether direct loss of CCND1 and/or overexpression of P21CIP1 resulted in the same phenotype as exogenous GATA4 expression, these alterations were introduced in T98G cells. Similar to exogenous GATA4, reduction of CCND1 or induction of P21CIP1 led to a significant decrease in proliferation, which was comparable to expression of GATA4 alone (Fig. 5, A and B; ANOVA, P < 0.01). However, only GATA4-expressing T98G cells were sensitized to cell death when exposed to temozolomide, a standard chemotherapeutic in GBM treatment (Fig. 5 C).

Figure 4. Re-expression of GATA4 suppresses cell proliferation and in vivo tumor growth. (A) Transient expression of GATA4 under a constitutive active CMV promoter or empty vector control (EV) decreases proliferation in several GBM cell lines of varying genetic backgrounds. *, P < 0.01. (B) Transient expression of GATA4 leads to attenuation of cyclin D1 with increased levels of P21CIP1 and P15INK4B. (C and D) Doxycycline was added to U87 GBM cell line expressing GATA4 under a doxycycline-inducible promoter. (C) At indicated time points, GATA4, P21CIP1, and CCND1 were measured by Western blotting. (D) At the indicated times, cells in culture were counted. *, P = 0.001. (E) Survival curve of NOD-SCID mice were injected with intracranial xenografts of U87 cells with GATA4 under doxycycline (DOX)-inducible promoter. Mice were continually given doxycycline in drinking water (GATA4 on, n = 10) or no doxycycline (GATA4 off, n = 10). (F) Immunohistochemical analysis of protein markers from tumors of mice not given dox (no GATA4) versus mice given dox (GATA4). Bars: (first H&E column) 500 µm; (second [magnified] H&E column) 50 µm; (GATA4, P21-CIP1, and ki67 columns) 25 µm. (G) Quantification of protein staining from F, n = 5 mice. *, P < 0.01. Mean and SEM are shown. A and D were performed in triplicate with mean and SEM reported.
Intracranial injection of 2.5×10^5 inducible U87 GATA4 cells in NOD-SCID mice was undertaken to determine in vivo growth effects of GATA4. All 10 of the control mice (− doxycycline) died of HGA at 32.8 ± 6.2 d (Fig. 4 E). In comparison, the 10 mice receiving doxycycline in their drinking water were all viable and symptom free when sacrificed at 120 d. Necropsy analysis demonstrated no brain tumors in seven mice, whereas three mice had small tumor growth with reduced proliferation and increased levels of GATA4 and P21^{CIP1} (Fig. 4, F and G).

We investigated the status of GATA4 in GBM brain tumor initiation cells (BTICs), which are postulated to be responsible for tumor initiation and maintenance and resistance to therapy (Alcantara Llaguno et al., 2009). These BTICs are able to self-renew, proliferate, and give rise to different lineages (Singh et al., 2004; Stiles and Rowitch, 2008). We screened two GBM BTIC lines generated from operative tissue as previously described (Pollard et al., 2009), G179 had significant reduction of GATA4 at the RNA and protein level compared with NHA and HF-240, a nontransformed neural stem cell line (Fig. 5 D). We next generated a stable G179 GATA4-expressing line (Fig. 5 D) and examined the effect on proliferation and sensitivity to temozolomide. G179 cells expressing GATA4 had significant reduction in proliferation by day 5 compared with G179 empty vector control lines cells grown in stem cell media conditions (Fig. S5 E). G179 GATA4–expressing lines were also sensitized to cell death when exposed to temozolomide (Fig. S5 F; $P = 0.016$). In addition to reduced proliferation, G179 GATA4–expressing cells had significant reduction of several candidate brain tumor stem cell markers: NESTIN, SOX2, and MSI-1 (Fig. 5 E). No changes in CD133 expression were observed. Lastly, we observed increased differentiation potential of G179 GATA4–expressing lines under differentiation conditions (stem cell media + 1% FBS) with significant increase of GFAP (astrocyte lineages) and TUBB3 (neuronal lineages) compared with controls (Fig. 5 F). Loss of GATA4 in our nontransformed HF-240 line was insufficient to increase proliferation (Fig. S5 E) but did impair NESTIN, GFAP, and TUBB3 expression during differentiation conditions (Fig. S5, G and H).

To complement our findings in GBMs, GATA4 loss was observed in several medulloblastoma and non–CNS tumor cell lines such as breast, lung, and prostate (Fig. S6, A and B). Stable expression of GATA4 in PC3 (prostate), A549 (lung), and MD–231 (breast) resulted in decreased proliferation and reduced anchorage–independent growth (Fig. S6, C–F).

In summary, transient or stable induction of GATA4 leads to diminished cellular proliferation and reduced transformation in vitro and in vivo.

Figure 5. GATA4 negatively regulates GBM growth. (A) Western blot demonstrating protein levels of GATA4, P21–CIP, CCND1, and APNG in T98G cells under varying treatments. MGMT was used as a loading control. (B) BrdU assay of T98G cells by modulation of GATA4, P21–CIP, or CCND1. *, $P < 0.01$ (ANOVA). (C) GATA4–mediated sensitivity to 100 µm temozolomide in vitro (T98G cells; *, $P = 0.001$, ANOVA). Cell death under non–temozolomide was statistically insignificant (P > 0.05, ANOVA). (D, Top) qRT–PCR GATA4 expression in brain tumor initiating cells G144, G179 compared with NHAs, normal neural stem cells (NSC), and the embryonic stem cell line (H9). (D, Bottom) Western blot assessing GATA4 protein status in the lines mentioned for D, Top. *, $P > 0.05$. (E) qRT–PCR of neural stem cell markers in G179 cells. Cells were grown in neural stem cell media. *, $P < 0.01$. (F) qRT–PCR of the lineage markers, GFAP (astrocytic), NKX2.2 (oligodendrocytic), and TUBB3 (neuronal). *, $P < 0.01$ in G179 cells. Cells were placed in differentiation conditions (neural stem cell media + 1% fetal bovine serum) for 12 d before RNA extraction. All experiments were performed in triplicate with mean and SEM reported.
GATA4 mediates its tumor suppressive effect through P21(CIP1).

GATA4-mediated decreased proliferation and increased the percentage of cells in G1, strongly suggesting a role in regulating cell cycle. GATA4 expression in several GBM cell lines consistently increased P21(CIP1) protein levels (Fig. 4 B). We sought to determine whether P21(CIP1) was a direct target of GATA4 as P21(CIP1) transcript levels increased with GATA4 (Fig. S7 A). We focused on P21(CIP1) induction by GATA4 in GBMs because our prior studies had already demonstrated that GATA4 induces P15(INK4B) in normal human and mouse astrocytes (Agnihotri et al., 2009). The P21(CIP1) promoter has several GATA binding elements, two of which were enriched by ChIP analysis (Fig. 6 A). Furthermore, transactivation luciferase assays with a −2.6-kb P21(CIP1):Lux construct induced luciferase expression in the presence of GATA4 (Fig. 6 B). Site-directed mutagenesis to eliminate the GATA elements in the two promoter luciferase constructs (MS1/MS2 for P21CIP1) ablated the ability of GATA4 to drive luciferase expression (Fig. 6 B). To determine if P21(CIP1) is a key downstream effector of GATA4, we transiently transfected U87 cells with a GATA4 cDNA expression construct and two P21CIP1 siRNAs (Fig. 6 C). Decreased P21CIP1 expression in these U87 cells significantly blocked, but did not eliminate, the ability of GATA4 to reduce proliferation (Fig. 6 D). Loss of P21CIP1 by itself further increases proliferation in U87 cells. (E) Western blot demonstrating overexpression of GATA4, loss of P53, and changes to P21-CIP1 levels. Doxorubicin was used to activate TP53. (F) P21-CIP1 luciferase assay in U373 cells (mutant TP53), and GATA4 and WT TP53 lead to a synergistic increase of luciferase expression. *P < 0.001, lane 5 compared with lanes 2 and 3. Experiments were performed in triplicate with mean and SEM reported.

Figure 6. P21(CIP1) is a direct target of GATA4. (A) ChIP assay of GATA4. GATA4 is enriched in P21(CIP1) promoter regions containing GATA binding elements (top, U87 cells). (B) P21-CIP1 luciferase construct was or constructs with GATA sites mutated were transfected into U87 cells with or without WT GATA4. Luciferase readings were taken 48 h after transfection. *, P < 0.001. GATA4 fails to activate luciferase expression when both GATA sites are mutated (MS1 and MS2). **, P < 0.001 compared with WT control P21-luciferase construct. (C and D) Silencing of P21(CIP1) with overexpression of GATA4 rescues the antiproliferative effect of GATA4 but not to parental levels. *, P < 0.001; **, P = 0.002. Loss of P21(CIP1) by itself further increases proliferation in U87 cells. ***, P < 0.001. (E) Western blot demonstrating overexpression of GATA4, loss of P53, and changes to P21-CIP1 levels. Doxorubicin was used to activate TP53. (F) P21-CIP1 luciferase assay in U373 cells (mutant TP53), and GATA4 and WT TP53 lead to a synergistic increase of luciferase expression. *, P < 0.001, lane 5 compared with lanes 2 and 3. Experiments were performed in triplicate with mean and SEM reported.
GATA4 sensitizes GBM cells to temozolomide independent of O-6-methylguanine-DNA-methyltransferase (MGMT)

The negative survival associated with GATA4 loss in GBM patients led us to hypothesize that GATA4 loss may be involved in chemotherapeutic resistance, such as temozolomide. Transient expression of GATA4 decreased viability of U87 and T98G GBM cells to temozolomide in a dose-dependent manner (Fig. 7, A and B). The reduced cell viability correlated with increased apoptosis as cells subjected to GATA4 and temozolomide had a significant increase of the sub-G1 population and increased levels of cleaved PARP (Fig. 7 C; and Fig. S7, E and F). We next used established and primary GBM cell lines (Sarkaria et al., 2006) to evaluate whether the GATA4-mediated sensitization was dependent on TP53 status and MGMT, the DNA repair enzyme which is most often implicated in temozolomide resistance (Hegi et al., 2004, 2005). T98G plus GBM6 (mutant TP53 and MGMT positive) and U87 plus GBM8 (wtTP53, MGMT negative) cells demonstrated similar sensitization to temozolomide resulting from GATA4 expression (Fig. 7 B). A surprising finding was that levels of MGMT were not altered (Fig. 7 C).

Excluding O6 guanine methylation, which is repaired by MGMT, temozolomide alkylates DNA at the N7 position of guanine and the N3 position of adenine (Denny et al., 1994), lesions which are repaired by alkylpurine-DNA-N-glycosylase (APNG; Hang et al., 1997). Transient transfection of GATA4 reduced levels of APNG (Fig. S7 G) in all established and primary GBM lines tested. Furthermore, T98G and GBM6 lines stably expressing GATA4 decreased APNG levels with no reduction of MGMT expression (Fig. 7 D).

To directly test the role of APNG in temozolomide resistance, we treated T98G cells with MGMT and APNG siRNA individually and in a double knockdown (Fig. 7 E). Loss of APNG or MGMT had no effect on cell viability under normal conditions (unpublished data; P > 0.05, ANOVA). Under temozolomide conditions, compared with control cells, loss of APNG sensitized cells to cell death in a dose-dependent manner (Fig. 7 F; P < 0.0001). Co-loss of both MGMT and APNG resulted in enhanced sensitization to temozolomide-induced cell death (Fig. 7 F). APNG siRNA2 and MGMT siRNA2 had similar results (unpublished data). Interestingly, GATA4 regulation of APNG is not at the transcript level, suggesting an alternative method of GATA4 regulating APNG (Fig. S7 H). Together, these results suggest that GATA4 sensitization of GBM cells to temozolomide is mediated through loss of APNG.
DISCUSSION

The identification and validation of GATA6 as a TSG in human GBMs (Kamnasaran et al., 2007) led to our interest in other GATA transcription factors, namely the GATA4,5,6 subfamily. Our expression profiling of GATA4, but not GATA5, demonstrated loss of expression in a majority of human GBM lines and specimens. Recent genome-wide studies have also reported reduced expression of GATA4 in 70% of samples analyzed, with reduced copy number and copy-neutral LOH in 5% of GBM samples (Cancer Genome Atlas Research Network, 2008; Parsons et al., 2008). In additional support of our thesis, we demonstrated ubiquitous expression of GATA4 in normal embryonic and adult astrocytes, where it functions as a negative regulator of astrocyte growth (Agnihotri et al., 2009). Direct evidence comes from data presented in this manuscript where GATA4 fulfills the hallmarks of a TSG in cancer development (Haber and Harlow, 1997), specifically human astrocytomas. GATA4 expression was lost in human GBMs through promoter methylation and somatic mutations associated with LOH. Interestingly we observed no transcript associated with these mutations. Given the fact that these mutations occur in exons near intron/exon boundaries, it is highly suggestive that these mutant transcripts are targeted for destruction by the mRNA nonsense-mediated decay pathway (Maquat, 2004). Loss of GATA4 in human and mouse astrocytes promoted HGA formation in vivo, in conjunction with other genetic alterations. Reexpression of GATA4 suppressed astrocytoma growth in vivo. It is of interest that we observed a higher frequency of GATA4 loss in LGAs (~50%) compared with our result for GATA6 (~20%). This, along with the present findings that GATA4 can negatively regulate brain tumor-initiating cells, suggests that GATA4 loss is an earlier event in astrocytoma genesis.

Our study is the first mechanistic investigation of the tumor-suppressive actions of GATA4, whose loss has been documented in other human cancers (Cai et al., 2009; Hellebrekers et al., 2009; Hua et al., 2009). We identified P21CIP1 as a direct transcriptional target of GATA4, with attenuation of the potent oncogene cyclin D1 through ubiquitination. This is of great interest, as GATA transcription factors have never been implicated in regulation of ubiquitination, a biological process which is poorly characterized in GBM. Our data demonstrate that induction of P21CIP1 is not entirely dependent on TP53, but additional pathways are likely to be used by GATA4 to induce P21CIP1 and inhibit cell cycle and astrocytoma proliferation. In addition, the fact that removal of P21CIP1 did not eliminate all of the antiproliferative effects of GATA4 suggests that mechanisms outside of P15INK4B and P21CIP1 exist for GATA4-mediated growth suppression. Identification of these target genes is of critical interest. In a recent study, four subtypes of primary GBM based on gene expression profiling were identified, with the proneural subtype having the greatest decrease of GATA4 (Verhaak et al., 2010).

Loss of GATA4 also correlated with loss of GFAP at the protein level, which is a surrogate marker for GBM tumor differentiation. Interestingly, GATA4 was found to be associated with the C1.1 region of the GFAP promoter. This is of high interest, as this region contains a highly conserved GATA element among several mammalian species (Lee et al., 2008). Although this may imply GFAP regulation by GATA4, the co-loss may also arise as a result of the fact that GATA4 and GFAP are both targeted for epigenetic silencing (Reestrepo et al., 2011; this paper). GATA4’s role in embryonic stem cell and endoderm differentiation has been well studied. The ability of GATA4 reexpression in the BTIC line G179 illustrated that GATA4 has a prodifferentiation effect in GBM BTIC lines with decreased proliferations. This is further complemented by the fact that NHAs expressing activated RAS and loss of GATA4 acquired progenitor-like phenotypes and that loss of GATA4 in the nontransformed neural stem cell (HF-240) reduces astrocytic and neuronal expression markers GFAP and TUBB3 at the RNA level. Although HF-240 cells express GATA4, its expression is lower compared with differentiated astrocytes (NHAs). Therefore, the exact role of GATA4 and the relevance of expression level remains to be elucidated in neural stem cells.

We also observed that GATA4 loss is a negative survival factor in GBM patients treated with current standardized care involving surgery, radiation, and temozolomide. Our results demonstrate sensitization of GBM cells by expression of GATA4, which is independent of TP53 and MGMT status of the cells. Our observation is that APNG, which is involved in repairing another site of DNA methylation by temozolomide, is of potential therapeutic interest in perhaps modulating GBM sensitivity to temozolomide and other alkylating agents independent of current interests in MGMT. This last point is of unusual interest, as it demonstrates how DNA repair enzymes, caretakers of DNA damage in normal cells, can be a major hurdle and contribute to chemotherapeutic resistance in cancer cells, not only limited to GBM. This is of clinical importance, as it provides a potential therapeutic target and offers an alternative explanation as to why some MGMT-positive patients are still responsive to temozolomide or why some MGMT-negative patients are resistant to temozolomide. Although we were unable to determine how GATA4 attenuates APNG, we hypothesize that it may be at the protein level, such as in ubiquitination by activation of unknown GATA4-regulated E3 ligases.

Furthermore, GATA4 loss in medulloblastoma cell lines and various other cancer cell lines at the protein level (Fig. S6, A and B) may suggest that GATA4’s effects are not restricted to just GBM. In direct support of this, stable restoration of GATA4 in lung, prostate, and breast cancer cell lines suppressed proliferation. These findings suggest that GATA4 exerts TSG properties in other cancers, in addition to our findings in GBM, and that the role of GATA4 in these cancers where it is silenced should be further investigated.

In summary, we have identified and validated a novel human TSG in human astrocytomas, with work initiated from well characterized mouse models. These replenishable mouse models, with limited genetic variability, not only facilitate our understanding of and interactions with known genetic alterations in human cancer but also serve to elucidate novel genetic
alterations with gene discovery strategies such as gene trap screens. Careful validation in human samples and mechanistic studies are required and collectively augment the findings from large-scale human cancer initiatives.

MATERIALS AND METHODS

Tumour specimens. NHB, low grade, and GBM operative samples were obtained from the IREB-approved Nervous System Tumor Bank at University Health Network (UHN; http://www.brain tumourbank.ca/index.html), Toronto. Additional GBM-containing tissue microarrays were obtained from the MD Anderson Cancer Center (G. Fuller and K. Aldape) and University of California, Los Angeles (P. Mischel).

Xenograft studies. Mice were maintained in accordance with UHN institutional animal protocols. Stereotactic guided intracranial injections in NOD-SCID mice were performed by injecting 250,000 cells of NHA-Ras + shRNA control, NHA-Ras + GATA4 shRNA1, U87-TRE-GATA into the frontal cortex (coordinates were X = -1.0, Y = 1.5, Z = 2.4, with Bregma serving as the 0 point for X and Y).

Cell lines and primary cultures. U87 and T98G cell lines were obtained from American Type Culture Collection. NHA and NHA + hTERT cells were obtained from R.O. Peper (University of California, San Francisco, CA) and U373 and D423 cells were obtained from D. Biggers (Duke University, Durham, NC). The cells were grown in DME supplemented with 10% FBS at 37°C in a 95% air/5% CO2 atmosphere. Primary mouse astrocytes were established from newborn or adult control CD1 mice or the Rgsb8 mouse model as previously described (Luo et al., 2000; Kamnasaran et al., 2007). The purity of mouse astrocytes was >95%, as determined by immunofluorescent cytochemistry assay with anti-glial fibrillary acidic protein antibody (astrocyte-specific marker). GBM6 and GBM8 xenograft lines were established from serially passaged mouse xenografts models as previously described (Sarkaria et al., 2006).

Mutation sequencing. GATA4 exons and neighboring intronic regions were amplified using PCR with Hi fidelity Taq (Invitrogen) and sequenced by the Centre for Applied Genomics Sequencing Facility (Hospital for Sick Kids Hospital). Mutations identified were validated in triplicate by three separate PCR reactions and sequencing reactions. See Table S1 for primer sequences.

In vitro methylation assay and luciferase assays. In brief, a 1-kb promoter fragment was amplified from a GATA4 BAC (GATA4 BAC: RP11-241B23, obtained from The Centre of Applied Genomics at SickKids Hospital). The GATA4 −1-kb promoter was cloned into a promoter less plg 4.0 luciferase construct (Promega) or was treated with Sss1 methyl transferase (New England Biolabs, Inc.) incubated at 37°C for 2 h, supplemented with 160 µM S-adenosylmethionine before being cloned into pGL 4.0. The P21-lux construct was obtained from B. Vogelstein (John Hopkins University, Baltimore, MD) and the P15 INK4B Lux construct from P.J. Chiao (M. D. Anderson Cancer Center). Primer sequences for site directed mutagenesis to the GATA sites in these constructs are available in Table S1.

Luciferase assays of various promoter luciferase constructs were performed as follows. 2 µg luciferase construct of interest and 100 ng of control Renilla (RLUC; Promega) was transfected into cell lines using FireFluor HD (Promega). Arbitrary luciferase units were normalized to Renilla luciferase values. Each transfection was repeated in triplicate.

Real-time PCR analysis. Total RNA isolation was performed using an RNA extraction kit total RNA extraction kit (Qiagen). cDNA was synthesized from 100 ng of total RNA using the QuantTect RT kit which includes DNase treatment (Qiagen). Real-time qPCR was performed on 40 ng cDNA template in a final volume of 25 µl using the Chromo4 Real-Time PCR detector (Bio-Rad Laboratories) using SYBR green fluorescence. Real-time PCR data were analyzed using analysis software (Monitor 3.1.3; Opticon). Data analysis was done using the ΔΔCT method with HPRT1 as a reference/control gene.

Soft agar assay for in vitro transformation. Soft agar plates were poured on top of the agar overlay and colonies were counted 14 d after. Soft agar experiments were repeated in triplicate.

Cell death assay. In brief, 105 T98G cells were plated onto 6-well dishes in 2 ml DME + 10% FBS. Cells were treated with siRNA scramble control, two different APNG siRNAs, two MGMT siRNAs, or a combination of OriGene was delivered using FuGene HD transfection reagent (Roche). pCMV6-XL4 with no cDNA insert was used as an empty vector control. Gene-specific siRNA (Integrated DNA Technologies and Qiagen) and scramble siRNA controls (all-star scramble siRNA; Qiagen) were delivered to cultured cells using HiPerFect transfection reagent (Qiagen) to a final concentration of 20 nM. Please refer to Table S1 for all siRNA sequences. For transient knockdown of TP53, TP53 shRNA clones in pLKO1 vectors were obtained from Thermo Fisher Scientific. Vectors were transfected into U87 cells using Fugene HD at a ratio of 3:1. Fugene HD/DNA TP53 full-length cDNA was a gift from M. Irwin (SickKids Hospital). P21 [C], cDNA expression vector was purchased from SIDNET (SickKids Hospital).

Bisulfite sequencing and methylation PCR. DNA collected from cell lines or GBM operative samples was bisulfite treated and purified using the EZ DNA methylation kit (Beecoli; Zymogen). For MSP-PCR, 50 ng DNA was used for template using GATA4 MSP-specific primers. For Bisulfite sequencing, GATA4 Bsp-PCR-specific primers were used and DNA gel extracted and purified. DNA was cloned into a PCR TOPO 2.1 sequencing vector (Invitrogen). A minimum of 10 clones were analyzed per cell line or GBM samples with NHA and NHb used as controls. Data were analyzed using BeQ analyzer software (v2.0; Bock et al., 2005). PCR conditions and primers were as previously described (Guo et al., 2004).

SNP marker analysis for LOH. PCR primers spanning GATA4 intragenic SNP markers were used to amplify PCR products of ~200–300 bp. Tumours in which mutations were identified had several SNP markers analyzed and compared with SNP markers in patient matched blood. All sequences were verified in triplicate using three independent PCR reactions and sequencing reactions. See Table S1 for primer sequences.

In vitro methylation assay and luciferase assays. In brief, a 1-kb promoter fragment was amplified from a GATA4 BAC (GATA4 BAC: RP11-241B23, obtained from The Centre of Applied Genomics at SickKids Hospital). The GATA4 −1-kb promoter was cloned into a promoter less plg 4.0 luciferase construct (Promega) or was treated with Sss1 methyl transferase (New England Biolabs, Inc.) incubated at 37°C for 2 h, supplemented with 160 µM S-adenosylmethionine before being cloned into pGL 4.0. The P21-lux construct was obtained from B. Vogelstein (John Hopkins University, Baltimore, MD) and the P15 INK4B lux construct from P.J. Chiao (M. D. Anderson Cancer Center). Primer sequences for site directed mutagenesis to the GATA sites in these constructs are available in Table S1.

Luciferase assays of various promoter luciferase constructs were performed as follows. 2 µg luciferase construct of interest and 100 ng of control Renilla (RLUC; Promega) was transfected into cell lines using FireFluor HD. Luciferase activity was measured using the Dual-Luciferase Reporter Assay System (Promega). Arbitrary luciferase units were normalized to Renilla luciferase values. Each transfection was repeated in triplicate.
APNG + MGMT siRNA siRNA delivery was accomplished by HiPerFect transfection reagent using the manufacturer's guidelines. Cells were then treated with 100 µM temozolomide for 48 h. After incubation with temozolomide, cells were collected and analyzed for cell death assay using trypan blue. Cells were counted using the Vi-CELL (12-Sample Carousel) Cell Viability Analyzer (Beckman Coulter).

BTIC and neurosphere cultures. G179, G144, and nontransformed HF-240 cells were grown using serum-free media supplemented with 20 ng/ml N2, B27, EGF, and FGF-2, as described previously for human GBM and fetal NS cells (Sun et al., 2008; Pollard et al., 2009). Culture vessels were coated with Laminin (Sigma-Aldrich) for 3 h at 10 µg/ml before use. GNS cells were routinely grown to confluence, dissociated using Accutase (Sigma-Aldrich), and then split 1:3–1:5. Medium was replaced every 3–5 d. For differentiation, we supplemented media with 1% FBS for 10–12 d. Differentiation was assessed using qRT-PCR of differentiation markers NKX2.2 (Olgo), GFAP (astrocyte), and TUBB3 (neuronal). Please see the primer list in Table S1 for sequences.

Differentiation was assessed by miniplates containing sterile microscope slides coated with laminin containing stem cell media supplemented with 1% FBS for differentiation. After a minimum of 4 d of attachment and spreading, immunofluorescence cytochemistry analysis using GFAP (1:500; Dako), NeuN antibody (1:200; Millipore), and TUJ1 (1:500; EMD) was performed to assess differentiation potential.

IHC. Paraffin-embedded blocks were cut into 5-µm sections and were de-waxed in xylene followed by rehydration in alcohol series. The tissues were subjected to antigen retrieval by pressure cooking for 20 min in citrate buffer, pH 6, followed by blocking of endogenous peroxidase in 0.3% H2O2. Specific dilutions of primary antibodies used are as follows: GATA4 monoclonal antibody (1:100; Santa Cruz Biotechnology, Inc.), TUJ1 monoclonal antibody (1:500; Millipore), NeuN antibody (1:200; Millipore), TPS3 (1:100; Cell Signaling Technology), NESTIN (1:250; EMD), Ki-67 (1:150; Dako), GFAP (1:300; Dako), and Synaptophysin (1:200; Abcam).

Primary antibody incubation times were overnight at 4°C degrees and detection was performed using biotinylated secondary IgG antibodies for 30 min using the ABC reagent kit (Vector Laboratories) and DAB chromagen (Vector Laboratories). Sections were counterstained briefly in hematoxylin (Thermo Fisher Scientific) followed by a brief wash in xylene and mounted in Permount (Thermo Fisher Scientific). Sections were transferred onto PVDF membrane (NEN Research Products) using a semi-dry transfer apparatus (Bio-Rad Laboratories). Membranes were probed for varying proteins at 1 h. GATA4 (G4; 1:200; Santa Cruz Biotechnology, Inc.), β-actin (1:5,000; Sigma-Aldrich Inc.), P14ARF (K-18; 1:200; Santa Cruz Biotechnology, Inc.), cyclinD1 (SC-479; 1:400; Santa Cruz Biotechnology, Inc.), P14* (p16; Santa Cruz Biotechnology, Inc.), P14ARF (1:200; Santa Cruz Biotechnology, Inc.), P14* (1:1,000; Santa Cruz Biotechnology, Inc.), P16* (1:1,000; Santa Cruz Biotechnology, Inc.), P19Arf (1:200; Santa Cruz Biotechnology, Inc.), cyclin D1 (1:400; S. Agnihotri), p16INK4A (1:250; Santa Cruz Biotechnology, Inc.), p14ARF (1:200; Santa Cruz Biotechnology, Inc.), and p53 (1:100; Vector Laboratories). Protein detection was performed using Chemiluminescence Reagent Plus (PerkinElmer). Additional experimental procedures. Cell Cycle, BrdU proliferation assays, caspase 3/7 assays, and ChIP assays were done using standard methods as previously described in detail (Guha et al., 1997; Dung et al., 2001; Shannon et al., 2005; Kammasar et al., 2007; Agnihotri et al., 2009).

Western blot analysis. Primary astrocytes/GBM cultures and cell lines were lysed with standard PLC lysis buffer containing protease and phosphatase inhibitors (Sigma-Aldrich). Protein concentration was determined using the BCA (bicinchoninic acid) assay (Thermo Fisher Scientific). 30 µg of protein lysates were loaded into 10 or 12% SDS-PAGE gels. Proteins were then transferred onto PVDF membrane (NEN Research Products) using semi-dry transfer apparatus (Bio-Rad Laboratories). Membranes were probed for varying proteins at 1 h. GATA4 (G4; 1:200; Santa Cruz Biotechnology, Inc.), β-actin (1:5,000; Sigma-Aldrich Inc.), P14ARF (K-18; 1:200; Santa Cruz Biotechnology, Inc.), cyclin D1 (SC-479; 1:400; Santa Cruz Biotechnology, Inc.), P14* (p16; Santa Cruz Biotechnology, Inc.), P14* (1:200; Santa Cruz Biotechnology, Inc.), P16* (1:1,000; Santa Cruz Biotechnology, Inc.), P19Arf (1:200; Santa Cruz Biotechnology, Inc.), cyclin D1 (SC-479; 1:400; Santa Cruz Biotechnology, Inc.), P14ARF (1:200; Santa Cruz Biotechnology, Inc.), P19Arf (1:200; Santa Cruz Biotechnology, Inc.), and p53 (1:100; Vector Laboratories). Protein detection was performed using Chemiluminescence Reagent Plus (PerkinElmer). Statistical analysis. All experiments were performed in triplicate with means and standard error of the mean or standard deviation subject to Student’s t test for pairwise comparison or ANOVA for multivariate analysis. Significance was defined as P < 0.05. Analysis of patient survival was performed using Kaplan-Meier analysis in SPSS software (v15) using three separate tests: log-rank (Mantel-Cox test) and Breslow (Generalized Wilcoxon and Tarone-Ware).

REFERENCES

The authors have no conflicting or competing financial interests.

Submitted: 4 October 2010
Accepted: 7 March 2011

REFERENCES

Please see the primer list in Table S1 for sequences.

30 µg of protein lysates were loaded into 10 or 12% SDS-PAGE gels. Proteins were then transferred onto PVDF membrane and probed for varying proteins: GATA4 (G4; 1:200; Santa Cruz Biotechnology, Inc.), β-actin (1:5,000; Sigma-Aldrich), p15INK4B (K-18; 1:200; Santa Cruz Biotechnology, Inc.), cyclin D1 (1:400; S. Agnihotri), p16INK4A (1:250; Santa Cruz Biotechnology, Inc.), p14ARF (1:200; Santa Cruz Biotechnology, Inc.), p19Arf (1:200; Santa Cruz Biotechnology, Inc.), and p53 (1:100; Vector Laboratories). Protein detection was performed using Chemiluminescence Reagent Plus (PerkinElmer).

Figure S1. GATA4 Loss in GBM. (A) GATA4 antibody negative controls for IHC. Left, GBM 8 (negative for GATA4 at the protein and RNA level) is also negative using the same antibody for IHC analysis to confirm antibody specificity. Right, no primary control. Bars, 50 µm. (B) RT-PCR of GATA4 transcript in 27 GBM operative samples. (C) MSP-PCR summary: GBM samples amplify either a GATA4 promoter methylated product or an unmethylated product (white represents unmethylated band, gray represents methylated, and black represents no band detectable). (D) MSP-PCR of in vitro methylated GATA4 promoter driving luciferase expression by Sss1. GATA4 promoter was treated with or without Sss1 and then ligated into pGL4.0 luciferase construct. (E) GATA4 promoter luciferase constructs from D were transfected into U87 cells. Luciferase activity was measured 48 h after transfection. *, P = 0.001. (F) Bisulfite sequencing analysis of GATA4-luciferase construct over a 72-h period to monitor in vivo methylation of the GATA4 promoter. P < 0.0001. (G) PCR of GATA4-luciferase construct. Bisulfite sequencing primers are specific to the transgene when transfected in cells and not to the endogenous GATA4 promoter. Experiments were performed in triplicate with mean and SEM reported.
Figure S2. **LOH of SNP markers flanking mutations in GATA4.** (A) LOH analysis of GBM operative specimens using SNP genetic markers mapping within the GATA4 gene. The locations of the SNP genetic markers are shown. LOH of SNP markers flanking the mutations was noted in all three GBM specimens. These LOH findings are associated with the loss of function mutations identified within the GBM specimens (Fig. 2). (B) Chromatograms depicting LOH among the three GBM specimens compared with the respective patient's blood genotypes. (C) Detailed information of SNPs used for LOH studies. Sequencing experiments were performed in triplicate. NI, noninformative; Y, yes.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>SNP</th>
<th>Polymorphism</th>
<th>SNPs#</th>
<th>SNP Site</th>
<th>SNP Frequency</th>
<th>Blood</th>
<th>Tumor</th>
<th>LOH at SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>(C/G)</td>
<td>rs13262643</td>
<td>Intron 4</td>
<td>0.36</td>
<td>G/C</td>
<td>G</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td>(A/C)</td>
<td>rs867858</td>
<td>3' UTR</td>
<td>0.33</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NI</td>
</tr>
<tr>
<td>C</td>
<td>(G/T)</td>
<td>rs11250159</td>
<td>Intron 2</td>
<td>0.45</td>
<td>T/G</td>
<td>G</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>(T/C)</td>
<td>rs2898292</td>
<td>Intron 2</td>
<td>0.46</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NI</td>
</tr>
<tr>
<td>E</td>
<td>(C/G)</td>
<td>rs12825</td>
<td>3' UTR</td>
<td>0.42</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NI</td>
</tr>
<tr>
<td>A</td>
<td>(C/G)</td>
<td>rs13262643</td>
<td>Intron 4</td>
<td>0.36</td>
<td>G/C</td>
<td>G</td>
<td>G</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td>(A/C)</td>
<td>rs867858</td>
<td>3' UTR</td>
<td>0.33</td>
<td>A/C</td>
<td>C</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(G/T)</td>
<td>rs11250159</td>
<td>Intron 2</td>
<td>0.45</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NI</td>
</tr>
<tr>
<td>D</td>
<td>(T/C)</td>
<td>rs2898292</td>
<td>Intron 2</td>
<td>0.46</td>
<td>T/C</td>
<td>T</td>
<td>T</td>
<td>NI</td>
</tr>
<tr>
<td>E</td>
<td>(C/G)</td>
<td>rs12825</td>
<td>3' UTR</td>
<td>0.42</td>
<td>C/G</td>
<td>C</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

A

Exon 1 2 3 4 5 6 7

- **SNP C**
 - Intron 2
 - G/T
- **SNP D**
 - Intron 2
 - T/C
- **SNP A**
 - Intron 4
 - C/G
- **SNP B**
 - 3' UTR
 - A/G
 - C/G

B

Mutation A: LOH at SNP A
- C/G

Mutation B: LOH at SNP B
- A/C

Mutation C: LOH at SNP D
- T/C

Mutation D: LOH at SNP E
- C/G

C

- **A**
 - (C/G)
 - rs13262643
 - Intron 4
 - 0.36
 - G/C
 - G
 - Y

- **B**
 - (A/C)
 - rs867858
 - 3' UTR
 - 0.33
 - A/C
 - C
 - Y

- **C**
 - (G/T)
 - rs11250159
 - Intron 2
 - 0.45
 - T/G
 - G
 - Y

- **D**
 - (T/C)
 - rs2898292
 - Intron 2
 - 0.46
 - T/C
 - T
 - Y

- **E**
 - (C/G)
 - rs12825
 - 3' UTR
 - 0.42
 - C/G
 - C
 - Y
Figure S3. Loss of GATA4 promotes transformation. (A–C) Stable knockdown of GATA4 in NHA with E6/E7 (silencing of p53 and pRB) or Ras B8 P(0) mouse astrocytes leads to colony formation in soft agar. *, P = 0.001. (D) Stable loss of GATA4 by shRNA in NHA immortalized by hTERT leads to increased proliferation by days 3 and 5. *, P < 0.05. (E) Soft agar assay of NHA-RAS + HTERT cells expressing control or GATA4 shRNA vectors. Numbers in microscope pictures correspond to numbers in bar graph. *, P < 0.001. Bars, 100 µm. (F) Immunohistochemical analysis of neuronal markers from intracranial injections of NHA-RAS + GATA4 shRNA (Fig. 3). Tumours (T) are NeuN and Synaptophysin negative, whereas neighboring mouse normal tissues (N) are strongly positive. Analysis was done on three tumors in the GATA4 knockdown group. Bars, 250 µm. (G) Loss of GATA4 in combination with activated Ras lead to increase of neural stem cell markers with loss of GFAP. *, P < 0.001. Experiments were performed in triplicate with mean and SEM reported.
Figure S4. GATA4 suppresses proliferation in GBM cells. (A) Common genetic alterations of GBM cell lines used. (B) Cell cycle analysis of U87 and T98G cells with or without GATA4. *, P < 0.01. (C) Cell cycle analysis of U87 cells stably expressing GATA4 under the doxycycline promoter at day 5. *, P = 0.0001. (D) Reexpression of GATA4 in U87 cells leads to reduced levels of CCND1. Immunoprecipitation of CCND1 under GATA4 expression demonstrates CCND1 to be ubiquitinated. Treatment with M132 compound, a 26s proteasome inhibitor, rescues CCND1 expression (W.C.L blot). (E) GATA4 expression leads to direct ubiquitination of CCND1. 48 h after transfection of HA-UB, GATA4, or empty vector, cells were harvested in RIPA buffer containing 1% SDS and boiled for 5 min to dissociate protein complexes. Lysates were diluted 10-fold and immunoprecipitated with CCND1 antibody. Immunoprecipitation of CCND1 was with a polyclonal rabbit antibody (Cell Signaling Technology) and immunoblotted with a mouse monoclonal (Santa Cruz Biotechnology, Inc.) to eliminate background and light and heavy chains because CCND1 has a similar molecular weight to IgG light chain. Whole cell lysate (W.C.L) was used to show transfection of HA-UB and GATA4 with β-actin used as a loading control. (F) Western blot demonstrating effective loss of GATA by siRNA, with densitometry analysis. (G) SNB-19 cells have lower proliferation rates compared with U87 and T98G cells [GATA4-nonexpressing cells, ANOVA]. Loss of GATA4 in SNB-19 cells increases proliferation compared with NHA cells mock and siRNA controls. SNB-19 GATA4 KD cells become statistically insignificant compared with U87 and T98G cells. P > 0.05 (ANOVA). Experiments were performed in triplicate with mean and SEM reported. *, P < 0.01.
Figure S5. GATA4 is associated with GFAP. (A) IHC analysis of serial sections of GBM from Fig. 1 demonstrates that 25/47 GBMs were GFAP positive. Bar, 100 µm. (B) Fisher’s exact test demonstrates an association of GATA4 loss with GFAP, P = 0.0087. (C) ChIP analysis shows GATA4 is associated with the C1.1 region of the GFAP promoter. (D) qRT-PCR pooled stable GATA4-expressing line in G179 compared with empty vector (EV). *, P < 0.01. (E) BrdU assay demonstrating reduced proliferation rate of G179 GATA4 expressers compared with controls (day 5; *, P = 0.016; day 7; *, P = 0.0053) and NSC-HF-240 compared with GATA4 shRNA knockdowns. (F) GATA4-expressing G179 cells become hypersensitive to temozolomide compared with empty vector control. *, P < 0.01. (G) Effect on neuronal and glial differentiated markers with loss of GATA4 in NSC-HF-240. *, P < 0.05. Experiments were performed in triplicate with SEM reported.
Figure S6. GATA4 loss in non-GBM cells. (A) GATA4 immunoblot in medulloblastoma cell lines. (B) GATA4 immunoblot in various cancer cell lines. (C) Stable GATA4 expression in several non-GBM cell lines. (D) BrdU proliferation assay represented as cell count of various cell lines expressing empty vector or GATA4. (E and F) Stable GATA4 expression in A549, PC3, and MDM-231 cells reduces colony formation in soft agar. *, P < 0.001. Experiments were performed in triplicate with mean and SEM reported.
Figure S7. GATA4 mechanism of tumor suppression. (A) Real-time qRT-PCR analysis of reexpression of GATA4 in U87 and T98G cells. *, \(P < 0.01 \). (B) qRT-PCR analysis of P21-CIP1 levels with modulation of TP53 and/or GATA4 (CMV promoter driving GATA4 expression [CMV-GATA4]). *, \(P < 0.01 \). (C) Companion Western blot to Fig. 6 E minus doxorubicin treatment. (D, Top) qRT-PCR of TP53 and GATA4 transfected NHA.s. (D, Bottom) Western blot of GATA4 and TP53 protein levels. *, \(P < 0.01 \). (E and F) Cell cycle analysis of U87 and T98G cells transfected with or without GATA4 in the presence or absence of temozolomide. *, \(P = 0.01 \). Sub-G1 phase was interpreted as dead or dying cells. (G) Transient expression of GAT4 in GBM cell lines reduces APNG at the protein level. (H) qRT-PCR analysis of GATA4 and APNG in U87 cells transfected with or without GATA4. *, \(P < 0.05 \). Experiments were performed in triplicate with mean and SEM reported.

Table S1 is provided as an Excel file and lists all primers, shRNA, and siRNA sequences used in this study.