AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development

Makiko Takizawa,1 Helena Tolarová,1 Zhiyu Li,1 Wendy Dubois,2 Susan Lim,1 Elsa Callen,3 Sonia Franco,4 Maria Mosaico,5 Lionel Feigenbaum,5 Frederick W. Alt,4 André Nussenzweig,3 Michael Potter,2 and Rafael Casellas1

1 Genomic Integrity and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892
2 Laboratory of Genetics and Experimental Immunology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892
3 Children’s Hospital, CBR Institute for Biomedical Research, and Howard Hughes Medical Institute, Boston, MA 02115
4 Children’s Hospital, CBR Institute for Biomedical Research, and Howard Hughes Medical Institute, Boston, MA 02115
5 Laboratory Animal Science Program, SAIC, NCI, NIH, Frederick, MD 21702

Immunoglobulin (Ig) isotype switching is a recombination event that changes the constant domain of antibody genes and is catalyzed by activation-induced cytidine deaminase (AID). Upon recruitment to Ig genes, AID deaminates cytidines at switch (S) recombination sites, leading to the formation of DNA breaks. In addition to their role in isotype switching, AID-induced lesions promote Igh-cMyc chromosomal translocations and tumor development. However, cMyc translocations are also present in lymphocytes from healthy humans and mice, and thus, it remains unclear whether AID directly contributes to the dynamics of B cell transformation. Using a plasmacytoma mouse model, we show that AID+/− mice have reduced AID expression levels and display haploinsufficiency both in the context of isotype switching and plasmacytomagenesis. At the Ig loci, AID+/− lymphocytes show impaired intra- and inter-switch recombination, and a substantial decrease in the frequency of S mutations and chromosomal breaks. In AID+/− mice, these defects correlate with a marked decrease in the accumulation of B cell clones carrying Igh-cMyc translocations during tumor latency. These results thus provide a causality link between the extent of AID enzymatic activity, the number of emerging Igh-cMyc-translocated cells, and the incidence of B cell transformation.

Upon antigen encounter, activated B cells often replace their heavy chain constant domain (Cm) with one of a set of downstream Cm exons (Cy, Cε, or Co) in a process known as class switch recombination (CSR). This intra-chromosomal recombination event occurs between highly repetitive switch (S) sequences located upstream of each Cm gene, with the exception of Cε. CSR is targeted to specific S regions by 5′ I promoters that mediate germ-line or sterile S-Cm transcription (1), and by 5′ and 3′ heavy chain enhancers that promote S-S synapses (2). These mechanisms cooperate to render S domains accessible to activation-induced cytidine deaminase (AID) (3, 4), a B cell-specific enzyme encoded by the Aicda gene that deaminates cytidine residues to uracils on both strands of S region DNA, resulting in U:G mismatches (5).

Uracils are recognized and removed by uracil DNA glycosylase and mismatch repair enzymes (6, 7), leading ultimately to the formation of DNA double-strand breaks (6, 8, 9). These DNA lesions are processed by the nonhomologous end-joining proteins and other repair mechanisms that ensure efficient recombination (10). If unrepaired, however, AID-mediated DNA breaks can become substrates for chromosomal translocations that often juxtapose protooncogenes to the Ig loci. Canonical Igh-cMyc translocations, for instance, are the hallmark of both Burkitt’s lymphomas in humans (T(8;14)) and plasmacytomas in mice (T(12;15)) (11).

The role of AID in the etiology of Igh-cMyc chromosomal translocations was implicated by
genetic experiments using AID^{−/−} mice carrying IL-6 or Bcl-xL transgenes (12, 13). In both cases, deletion of AID resulted in the absence of canonical cMyc translocations. In H2AX^{−/−} B cells, AID was also required for CSR-mediated translocations (14). In addition, several lines of evidence indicate that AID somatic hypermutation (SHM) activity may also promote tumor development by targeting non-Ig genes (15–17). Using a plasmacytoma mouse model, we now demonstrate that the extent of AID activity influences the incidence of B cell tumor development by directly determining the number of lymphocytes undergoing Ig_{h-cMyc} chromosomal translocations during tumor latency.

RESULTS AND DISCUSSION

Delayed plasma cell tumor development in AID heterozygous mice

Pristane injection of BALB/c mice expressing Bcl-2 or Bcl-xL transgenes leads to the rapid induction of plasmacytomas carrying canonical Ig_{h-cMyc} translocations (13, 18). In the absence of AID, BALB/c-Bcl-xL mice display a reduced incidence of plasmacytomas carrying translocations that are nonreciprocal and do not involve S regions (13). To investigate whether AID gene dosage contributes to tumor susceptibility, we induced plasmacytomas in groups of BALB/c-Bcl-xL transgenic mice: the median tumor latency in AID^{+/−} groups of mice (n = 82) was 82 d, whereas that of AID^{+/+} mice (n = 41) was 102 d (P = 0.01; Fig. 1 B, left). In the absence of Bcl-xL, plasma cytomagenesis was as expected, markedly delayed in both groups of mice. Still, AID heterozygous mice showed decreased tumor incidence relative to AID wild-type counterparts (Fig. 1 B, right). These results thus reveal a straight correlation between AID gene dosage and the incidence of plasma cell tumor development.

Reduced CSR in stimulated AID^{+/−} B cells

The results described in the previous paragraph imply that AID activity is compromised in AID^{+/−} mice. To confirm this, we stimulated AID^{+/−} and AID^{+/+} splenic B cells with LPS and IL-4, which induce AID transcription and CSR primarily to IgG1. Real-time PCR and Western blot analyses showed lower AID mRNA and protein in activated AID^{+/−} lymphocytes compared with controls (Fig. 2 A). This reduction in AID expression levels was correlated with impaired switching, as indicated by a 40–50% decrease in surface IgG1 expression in heterozygous cells relative to wild-type (P < 0.0005; Fig. 2 B). B cell activation with LPS and α-β-dextran or IFN-γ also showed a statistically significant decrease in γ3 and γ2a recombination between AID^{+/+} and AID^{+/−} lymphocytes (P = 0.01 and P < 0.0005 for γ3 and γ2, respectively; n = 5; Fig. 2 B). CSR levels have been shown to be closely associated with cell division (19, 20). We examined cell proliferation in AID^{+/−} and wild-type cultures by CFSE labeling, and IgG1 switching was simultaneously determined by flow cytometry. We found no obvious differences in cell division between the two groups of B cells (Fig. 2 C, histograms). However, γ1 switching in AID^{+/−} lymphocytes lagged AID^{+/+} by approximately two cell cycles (Fig. 2 C, graph), thus confirming that CSR levels are compromised in AID^{+/−} cells.

Lymphocytes activated for CSR undergo frequent AID-dependent S deletions, predominantly at S_μ (21, 22). To measure the incidence of intra-S_μ deletions, we generated IgM⁺ hybridoma clones from AID^{+/+} and AID^{+/−} B cells stimulated for 96 h in the presence of LPS and IL-4. Southern blotting showed a threefold reduction in intra-S_μ deletions in B cells carrying a single copy of Aicda, as only 9 out of 79 AID^{+/−} clones (11%) displayed structural alterations in S_μ, whereas S_μ deletions were present in 43 out of 110 AID^{+/+} clones analyzed (39%; P < 0.0005; Fig. 2 D).

Reduced inter- and intra-switch recombination in AID^{+/−} cells could conceivably result from monoallelic expression of Aicda. Under this scenario, up to 50% of AID^{+/−} B cells would transcribe the neomycin-deleted allele, leading to a complete absence of AID expression and activity in 50% of cultured cells. To directly evaluate this idea, we monitored AID gene transcription by single-cell RT-PCR (23). By this assay, only the untargeted Aicda allele is amplified using PCR primers specific for AID exons 2 and 3, which are deleted by neomycin insertion in the targeted allele (3). We detected AID in 185 out of 192 single AID^{+/−} B cells assayed (Fig. 2 E), a result that clearly demonstrates Aicda transcription to be biallelic. We conclude that CSR defects in AID^{+/−} cultures result from a reduction in overall AID expression levels.

AID deaminase leads to nucleotide substitutions at S domains (24, 25), primarily as a result of DNA replication over uracils and error-prone repair activity (6). To measure S mutation frequency, we cloned and sequenced the 5′ end of S_μ from AID^{+/−} and wild-type lymphocytes stimulated with LPS and IL-4 for 96 h. Sequencing analysis showed a striking reduction in S_μ mutations in heterozygous cells (P < 0.0005; Fig. 2 F). The calculated mutation frequency in AID^{+/−} cells was in fact not significantly higher than the PCR error rate determined using AID^{+/+} controls (P = 0.2; Fig. 2 F). Collectively, our data reveal that the frequency of S mutation and recombination in stimulated B cells is determined, at least in part, by AID gene dosage.

Reduced AID activity in AID^{+/−} mice during the immune response

We next examined AID activity during the humoral immune response. AID^{+/−} and control BALB/c littermates were immunized in the front footpads by subcutaneous injection of 50 μg of chicken γ globulin (CGG) in the presence of
Affinity maturation was affected as a function of AID expression, AID^{+/−}/H11002 and control mice were immunized intraperitoneally with hapten (4-hydroxy-3-nitrophenyl)acetyl (NP) conjugated to CGG (NP_{25}-CGG) adsorbed to alum. The affinity of serum antibodies for NP was then monitored 7 and 28 d after immunization by ELISA. In this assay, low affinity antibodies were captured using a high density NP-substituted BSA (NP_{30}-BSA), whereas high affinity antibodies were specifically monitored with NP_{7}-BSA. Low affinity IgG1 serum levels were not different between the two strains of mice (P = 0.8; Fig. 3 C, left). Nonetheless, we found a statistically significant reduction of high affinity anti-NP antibodies in AID^{+/−}/H11002 mice compared with wild-type counterparts (P = 0.006; Fig. 3 C, right). Thus, it seems likely that under conditions of limited AID activity, fewer AID^{+/−}/H11002 B cell clones develop high affinity antibodies during the immune response. Based both on the CSR and SHM data, we conclude that the extent of AID enzymatic activity during the immune response is moderately affected in AID^{+/−}/H11002 mice.

To evaluate whether reduced AID expression levels affected V gene hypermutation, we next cloned and sequenced the 5' end of the JH-E intron (downstream of rearranged V_{H}DJ_{H} genes) from sorted B220^{+}CD95^{high} GC cells. This analysis showed a comparable hypermutation frequency between the two groups of mice (P = 0.5). Notably, AID^{+/−}/H11002 GCs harbored fewer clones carrying multiple mutations (Fig. 3 B), suggesting a reduction in the accumulation of point mutations in heterozygous cells. To directly evaluate whether

Figure 1. Haploinsufficiency in plasma cell tumor development in AID^{+/−}/H11002 mice. (A) Photomicrographs of plasma cell tumors arising in BALB/c-Bcl-xL AID^{+/+} and BALB/c-Bcl-xL AID^{+/−}/H11002 mice show no significant variations in plasma cell morphology. Bar, 20 μm. (B, left) Incidence of plasma cell tumors in the presence of Bcl-xL as determined by the histological appearance of foci, with each containing 50 or more atypical plasma cells (red squares, plasma cell tumors in 36 out of 41 AID^{+/+} mice injected with pristane; black circles, plasma cell tumors in 58 out of 96 AID^{+/−}/H11002 mice). (right) Plasmacytoma development in AID^{+/+} (n = 16) and AID^{+/−}/H11002 (n = 39) mice in the absence of Bcl-xL.
Figure 2. Reduced AID activity in AID$^{+/−}$ B cells. (A) AID mRNA (graph, AID$^{+/−}$ and AID$^{−/−}$; n = 5) and protein (AID$^{+/+}$, AID$^{+/−}$, and AID$^{−/−}$), as measured by real-time PCR and Western blotting. Error bars represent the mean ± SD. (B, left) IgG1 switching (pseudocolor plot) profiles in wild-type and AID$^{+/−}$ B cells activated ex vivo, as determined by flow cytometry. (right) Mean switching to IgG1, IgG3, and IgG2a. Values represent the mean ± SD (n = 5). Antibodies were B220-PercP-Cy5.5 and IgG1-PE. Dead cells were gated out using DAPI. (C) Flow cytometric measurement of cell proliferation and IgG1 switching on CFSE-labeled B cells activated for 96 h with LPS + IL-4. The graph represents percentages of γ1 switching at each cell division (n = 2). Error bars represent the mean ± SD. (D) The percentage of intra-switch deletions as determined by Southern blotting on hybridomas generated from AID$^{+/+}$ and AID$^{+/−}$ lymphocytes activated for 96 h in the presence of LPS + IL-4. Intact Sμ domains result in a 6.9-kb band, whereas smaller bands (stars) represent intra-switch deletions. (E) Analysis of AID gene expression by single-cell RT-PCR (137 bp) from sorted LPS + IL-4–activated B cells. Pie chart segments are proportional to the number of sequences carrying an equal number of mutations (indicated on the periphery). The total number of sequences is portrayed in the middle of each chart, and mutation frequency (calculated as the total mutations per total base pairs sequenced) and p-values are shown below the charts.
PCR was evaluated by Southern blotting using both Igh- and cMyc-specific probes, and unique T(12;15)-positive clones were distinguished by their size (from 1–4 kb; Fig. 4 A) and sequencing analysis (Fig. 4 B; and Table S1, available at http://www.jem.org/cgi/content/full/jem.20081007/DC1). At day 25, an analysis of 57 PCR samples from AID +/+ mice revealed nine distinct translocations (16%, or 1 T(12;15)/10^5 cells; Fig. 4 A). In contrast, only 2 out of 67 AID +/+H11002 samples (3%, or 0.2 T(12;15)/10^5 cells) showed bona fide Igh-cMyc translocations (P = 0.01; Fig. 4 A and Table S1). Similarly, 22 out of 69 (30%) AID +/+ samples showed translocations at day 35 after pristane treatment, whereas we detected only 7 translocations in 72 (10%) AID +/+H11002 samples assayed (2 vs. 0.6 T(12;15)/10^5 cells, respectively; P = 0.001; Fig. 4 A). In both groups of mice, the majority of the translocations were mapped to S/H9251 (70%; Table S1), a feature that suggestively reflects the prevalence of IgA CSR in gut-associated lymphoid tissues (23). Thus, compared with wild-type controls, AID +/+H11002 mice display a substantial reduction in the number of translocation-bearing cells emerging upon tumor induction.
S recombination and Igh-cMyc translocations originate from DNA double-strand breaks targeting S domains in activated B cells (14, 28). To evaluate whether the frequency of S DNA breaks was affected in AID heterozygous mice, we bred the AID-deleted allele onto the H2AX−/− background, where a large number of unrepaired CSR lesions progress into chromosome breaks (14, 28, 29). These lesions, detected in metaphase spreads by fluorescence in situ hybridization (FISH) using VH- and Cα-specific probes, are good indicators of the relative frequency of S DNA breaks occurring in activated B cells (14, 28).

Figure 4. Paucity of translocation-bearing clones and CSR-induced DNA breaks in AID+/− mice. (A) Igh-cMyc chromosomal translocations in BALB/c-Bcl-xL AID+/+ and BALB/c-Bcl-xL AID+/− mice (three mice per time point) were amplified by PCR 25 or 35 d after pristane injection using nested primers (arrows) specific for cMyc intron 1 and Igh Cμ, Cγ2b, and Cα constant domains. PCR products were analyzed by Southern blotting using cMyc- and Igh-specific probes. (B) PCR products appearing multiple times were sequenced and counted once if they represented a single clone. (C) Igh FISH in metaphase spreads from AID+/+H2AX−/− and AID+/−H2AX−/− B cells activated for CSR. (left) The loss of the red VH signal with an intact green Cα signal (micrograph) denotes a chromosome 12 break. (right) Total number of breaks observed for each strain (metaphases analyzed are indicated on top of each bar).
might be imposed by mechanisms controlling nuclear AID. AID protein content falls below a critical threshold in lymphocytes carrying a single copy of Auida. Such a threshold might be imposed by mechanisms controlling nuclear AID (30, 31), which represents a minor fraction of total AID protein in activated B cells (32). Alternatively, error-free repair pathways, which have been shown to inhibit both CSR and SHM (17, 33), may compromise AID activity to a greater extent under conditions of limited AID transcription. Regardless of the mechanism at work, our findings demonstrate that AID expression levels directly determine the rate of canonical translocations emerging during tumor induction. Overexpression of such clones may subsequently rely on a mistargeted SHM, which as we have shown is also dependent on the amount of AID.

Our previous work revealed that noncanonical T(12;15) translocations can occur in the absence of AID (13). On the other hand, canonical translocations targeting IgH region DNA and CμMy c-intron 1 absolutely require AID enzymatic activity (12, 13). We now extend these results by showing that AID expression levels directly determine the rate of canonical translocations emerging during tumor induction in vivo. Ramiro et al. have similarly shown that cμMy translocations can be induced in an AID-dependent manner in vitro (28).

In that study, translocations were rarely present under physiological AID levels in LPS- and IL-4-stimulated B cells, whereas AID overexpression dramatically increased their frequency (28). In like manner, IgH-cμMy translocations are produced to a disproportionately high degree in stimulated B lymphocytes deficient for microRNA 155 (34), which normally suppresses the steady state of Auida mRNA and AID protein content (34, 35). We find it noteworthy that although the frequency of off-target translocations is highly sensitive to AID expression levels, in vivo on-target SHM and CSR are only mildly affected by AID overexpression (34) or underexpression (this report). It seems likely that AID enzymatic activity is differentially constrained at on and off targets. The unraveling of such regulatory mechanisms might help clarify how S DNA breaks promote physiological recombination or pathological translocations in the B cell compartment.

Materials and Methods

Tumor Induction. SV40-Eμ-Bcl-xL and AID−/− (a gift from T. Honjo, Kyoto University, Kyoto, Japan) mice were backcrossed for 11 generations onto BALB/c mice in a conventional facility. Bcl-xL-AID−/− and Bcl-xl-AID−/− mice were given 0.5 ml of protease oil intraperitoneally at 8 wk of age, followed by a second injection of protease 60 d later. BALB/c-Bcl-xl AID−/− and AID−/− mice were intraperitoneally inoculated with 0.4 or 0.5 ml protease (Aldrich Chemicals) at 2 mo of age. Using Wright-Giemsa–stained cytospin preparations of ascites, plasma cell tumors were diagnosed by the presence of 10 or more tumor cells per field. All animal experiments were performed according to the NIH guidelines for laboratory animals and were approved by the Scientific Committee of the NIAMS and NCI Animal Facilities.

B Cell Culture. To induce S recombination ex vivo, B lymphocytes were isolated from spleens by immunomagnetic depletion using CD43 MACS beads (Miltenyi Biotec). Purified cells were then activated in B cell media (RPMI 1640, 10% FCS, 1× antibiotic-antimycotic, 1% glutamine, and 10 mM Hepes) for 72 or 96 h in the presence of 25 μg/ml LPS (Escherichia coli 0111:B4, Sigma-Aldrich) and 5 ng/ml IL-4 (Inprotorp) to induce switching to IgG1. 2.5 ng/ml α-β-dextran (Fina Biosolutions) for IgG3 CSR, or 2 ng/ml IFN-γ (PeproTech) for IgG2a switching. Cell proliferation was monitored by CFSE staining according to the manufacturer’s instructions (Invitrogen).

Flow Cytometry. Unless otherwise stated, the following antibodies were obtained from BD Biosciences: B220-PercP-Cy5.5, Fab2-lgM-Cy5 (Jackson ImmunoResearch Laboratories), IgG1-PE, IgG3-biotin, streptavidin-PE, and IgG2a-FITC. Apoptotic cells were gated out using TO-PRO-3 (Invitrogen) or DAPI (Sigma-Aldrich). Flow cytometers used were the FACSCalibur (BD Biosciences) and the Cyan (Dako), and a MoFlo instrument (Dako) was used for cell sorting. Flow cytometry data were analyzed with FlowJo software (Tree Star, Inc.).

qRT-PCR. RNA was extracted with RNAqueous-Micro (Ambion) and treated with DNase. cDNA was synthesized, and the level of endogenous AID transcripts was monitored by real-time PCR with the following primers: PrimerBank-mAID3′ (5′-gcacactgcgaactcct-3′) and PrimerBank-mAID3′ (5′-gggaccatcgctggag-3′). cDNA was normalized based on Ku80 mRNA with the following primers: QRT-mKu80-5′ (5′-CTTCCCTGGACGCCCTGTA-3′) and QRT-mKu80-3′ (5′-GCTTGCGGGAGTGCAGAAAC-3′).

Western Blotting. To detect AID protein, cultured B cells in the presence of LPS and IL-4 were lysed with NP-40 lysis buffer (10 mM Tris-HCl [pH 8], 150 mM NaCl, 0.5% NP-40, 5 mM EDTA, 1 mM DTT, and protease inhibitor cocktail). 50 μg per well of lysates was separated using NuPAGE 4–12% Bis-Tris gels (Invitrogen). Gels were transferred to polyvinylidene fluoride membranes (Invitrogen) and analyzed by immunoblotting AID antisera (a gift from J. Stavnezer, University of Massachusetts, Worcester, MA) and anti–β-actin antibody (Millipore). For secondary antibodies, goat anti-mouse IgG (Millipore) and goat anti-rabbit IgG conjugated with horseradish peroxidase (HRP; Abcam) were used. Blots were visualized using the ECL-PLUS kit (GE Healthcare).

Sμ Mutations. Mutations at Sμ were determined by amplifying genomic DNA from LPS + IL-4–stimulated (96 h) B cells with primers Sμ(B) (5′-gtaaggggacccgtagtaag-3′) and Sμ(D) (5′-cactgttaggctagtaag-3′) at 95°C for 30 s, 60°C for 30 s, and 72°C for 40 s (product = 650 bp). The final product was ligated into ZeroBlunt vector (Invitrogen), and positives clones were sequenced with M13 primers.

FISH Analysis. At 72 h, cultured B cells were cultured at mitosis with 100 ng/ml colcemid (Roche), swollen in prewarmed 0.075 M KCl for 15 min at 37°C in the presence of 1 mg/ml colchicine (Roche). Cells were incubated in 100 μl of 4% formaldehyde at 37°C for 15 min. Cells were then incubated in 0.1 mg/ml RNase A (Roche) for 1 h at 37°C. Fixed cells were washed with PBS and resuspended in 0.5% Triton X-100, 1 mg/ml Protease K (Roche), and 2 mg/ml proteinase K (Roche) at 37°C for 1 h. Cells were then washed with PBS and resuspended in 0.1 mg/ml Proteinase K (Roche) at 37°C for 1 h. Cells were then washed with PBS and resuspended in 0.1 mg/ml Proteinase K (Roche) at 37°C for 1 h. Cells were then washed with PBS and resuspended in 0.1 mg/ml Proteinase K (Roche) at 37°C for 1 h. Cells were then washed with PBS and resuspended in 0.1 mg/ml Proteinase K (Roche) at 37°C for 1 h.

JEM VOL. 205, September 1, 2008 1955

Downloaded from jem.rupress.org on January 29, 2018
Hybridoma analysis. Analysis of CD43⁻ MACS-isolated B cells were stimulated with LPS + IL-4 for 96 h and fused to the SP2/0Ag-14 myeloma cell line. IgM-secreting clones, as determined by ELISA, were expanded in culture for further analysis.Genomic DNA was prepared and Southern blot analysis was performed using standard techniques.

Detection of IgH-cMyc translocations and plasma cell tumors. Tissue samples were harvested 25 or 35 d after pristane injection. DNA samples from three (day 35) and five (day 25) mice were prepared as follows: Peyser’s patches (three samples per mouse), mesenteric lymph nodes (two samples per mouse), and oil granulomas (two samples per mouse). Tissues were collected in separate tubes and DNA was isolated individually. The sensitivity of the translocation PCR was measured using serial dilution of positive control cells with wild-type mouse liver cells and calculated as >6.25 T(12;15) positive cells/10⁵ negative cells. PCR products were separated on 1% agarose gels and denatured for 15 min in the presence of 0.4 M NaOH before being transferred to nylon membranes. The Southern blot probe was amplified and labeled by the ECL Direct Labeling and Detection System (GE Healthcare). Probe primer sequences were as follows: c-myc forward, 5'-acctgaggagagacctg-3'; c-myc reverse, 5'-agtctggctagctggtctgc-3'; Cα forward, 5'-cttggcaggaggcttggc-3'; Cα reverse, 5'-ccgtggctggtctgcagctgc-3'; Cγ2β forward, 5'-agcagacctgctgagc-3'; Cγ2β reverse, 5'-cagcagacctgctgagc-3'; Cα forward, 5'-gtggtgcgctgctgcagctgc-3'; and Cα reverse, 5'-tgagaaggagagacctg-3'.

ELISA. Five AID⁻/⁻ and AID⁺/⁺ mice were immunized intraperitoneally with 100 μg NP₂-CGG precipitated in Alum (Thermo Fisher Scientific). Sera were collected before and at 7 or 28 d after immunization. Serum anti-NP levels were measured by standard ELISA. Plates were coated with 5 μg/ml NP₂-CGG BSA or NP₂-BSA in PBS. Serum samples were diluted, and bound antibody was detected using HRP-conjugated anti-mouse IgG (Bethyl) followed by 3,3',5,5'-tetramethylbenzidine treatment.

Online supplemental material. Table S1 shows the translocation PCR/Southern blot results from AID⁻/⁻, AID⁺/⁺, and AID⁺/⁻ mice carrying Bcl-xL. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20081007/DC1.

Submitted: 8 May 2008
Accepted: 2 July 2008

REFERENCES

Table S1. Summary of translocations amplified by long-distance PCR

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Tissue type</th>
<th>Samples (PCRs)</th>
<th>T(12;15)+</th>
<th>Sequenced</th>
<th>Sμ</th>
<th>Sγ</th>
<th>Sα</th>
<th>T(12;15)+/Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MLNs</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AID⁺⁺⁺⁺</td>
<td>OG</td>
<td>27</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>9/57 (16%)</td>
</tr>
<tr>
<td></td>
<td>PPs</td>
<td>18</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MLNs</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AID⁺⁻⁻⁻</td>
<td>OG</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2/67 (3%)</td>
</tr>
<tr>
<td></td>
<td>PPs</td>
<td>26</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AID⁺⁺⁺⁺</td>
<td>OG</td>
<td>27</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>22/69 (32%)</td>
</tr>
<tr>
<td></td>
<td>PPs</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AID⁺⁻⁻⁻</td>
<td>OG</td>
<td>27</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>7/72 (10%)</td>
</tr>
<tr>
<td></td>
<td>PPs</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AID⁻⁻⁻⁻</td>
<td>OG</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/66 (0%)</td>
</tr>
<tr>
<td></td>
<td>PPs</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

MLNs, mesenteric lymph nodes; OG, oil granuloma; PPs, Peyer’s patches. Translocations (T(12;15)) were detected by Southern blot as shown in Figure 4 of the main text, and mapped to either Sμ, Sγ, or Sα regions.