Cyclic adenosine monophosphate is a key component of regulatory T cell–mediated suppression

Tobias Bopp,1 Christian Becker,2 Matthias Klein,1 Stefan Klein-Heßling,4 Alois Palmeschofer,4 Edgar Serfling, Valeska Heib,1 Marc Becker,1 Jan Kubach,2 Steffen Schmitt,3 Sabine Stoll,2 Hansjörg Schild,1 Martin S. Staeger,5 Michael Stassen,1 Helmut Jonuleit,2 and Edgar Schmitt1

Naturally occurring regulatory T cells (T reg cells) are a thymus-derived subset of T cells, which are crucial for the maintenance of peripheral tolerance by controlling potentially autoreactive T cells. However, the underlying molecular mechanisms of this strictly cell contact–dependent process are still elusive. Here we show that naturally occurring T reg cells harbor high levels of cyclic adenosine monophosphate (cAMP). This second messenger is known to be a potent inhibitor of proliferation and interleukin 2 synthesis in T cells. Upon coactivation with naturally occurring T reg cells the cAMP content of responder T cells is also strongly increased. Furthermore, we demonstrate that naturally occurring T reg cells and conventional T cells communicate via cell contact–dependent gap junction formation. The suppressive activity of naturally occurring T reg cells is abolished by a cAMP antagonist as well as by a gap junction inhibitor, which blocks the cell contact–dependent transfer of cAMP to responder T cells. Accordingly, our results suggest that cAMP is crucial for naturally occurring T reg cell–mediated suppression and traverses membranes via gap junctions. Hence, naturally occurring T reg cells unexpectedly may control the immune regulatory network by a well-known mechanism based on the intercellular transport of cAMP via gap junctions.

T reg cells with suppressive properties were described for the first time more than 30 yr ago and experienced an overwhelming renaissance in the last 10 yr (1, 2). Although different kinds of induced regulatory T cells (T reg cells) were described, it is common sense that naturally occurring T reg cells are of capital importance for preventing autoimmunity (3). Basic research and preclinical studies revealed that they do not only play a crucial role in the maintenance of peripheral tolerance but also in the control of allergic, autoimmune, and infectious diseases and anti-tumor responses as well (3). Today it is widely accepted that naturally occurring T reg cells exert their regulatory capacity via cell contact–dependent, cytokine–independent mechanisms. For instance, the use of T cells, defective in TGF-β signaling, or the application of neutralizing antibodies to TGF-β and IL-10 had no effect on suppressor function in vitro (4). In addition, the use of TGF-β–deficient naturally occurring T reg cells in an adoptive transfer colitis model or the adoptive transfer of naturally occurring T reg cells from IL-10–deficient mice in an asthma model doubtlessly revealed that these immune suppressive cytokines are not directly involved in naturally occurring T reg cell–mediated suppression in vivo (5, 6).

The inhibition of IL-2 gene expression in the responder T cells is a characteristic feature of naturally occurring T reg cell–mediated suppression (7). However, the underlying molecular mechanisms of this process still remain to be discovered (3). The first description of a physiological role of cAMP in 1957 gave rise to a brilliant concept of cAMP being a second messenger that mediates the effects of a variety of different biologically active agents (8, 9).
Among miscellaneous functions, cAMP is known to be a potent inhibitor of T cell growth, differentiation, and proliferation (10). However, the mechanisms by which cAMP exerts this suppressive function are largely undetermined. The first evidence that cAMP-dependent signal transduction directly attenuates the production of IL-2 in CD4+ T cells was recently further corroborated by the finding of a novel cAMP-inducible transcriptional repressor termed inducible cAMP early repressor (ICER; references 11, 12). Collectively, a multitude of studies using cAMP-elevating agents such as prostaglandin E2, cholera toxin, and forskolin clearly demonstrated that cAMP is a potent inhibitor of IL-2 production and subsequent proliferation of CD4+ T cells.

In this study we show that naturally occurring T reg cells mediate their suppressive capacity by transferring cAMP into responder CD4+ T cells via gap junctions (GJs). This analysis reveals for the first time an unexpected role for a classical second messenger in combination with an ubiquitous system of intercellular communication in naturally occurring T reg cell–mediated suppression.

RESULTS AND DISCUSSION

Comparative analyses of naturally occurring T reg cells and conventional CD4+ T cells (CD4+ T cells) using gene array technology and quantitative RT-PCR revealed that the expression of the cAMP-cleaving enzyme phosphodiesterase 3B (PDE3B) was strongly reduced in naturally occurring T reg cells (unpublished data). This finding was in agreement with recently published data (13) and led us to suggest that naturally occurring T reg cells harbor high concentrations of cAMP that profoundly suppress the production of IL-2 in naturally occurring T reg cells, which is a characteristic feature of this T cell population (3).

Assessment of cAMP detected high concentrations of cAMP in naturally occurring T reg cells, whereas in CD4+ T cells this second messenger was scarce (Fig. 1 A, t = 0). This difference further increased after activation of both T cell types (Fig. 1 A, t = 4–16 h). In contrast, 16 h upon co-culture with naturally occurring T reg cells, CD4+ T cells showed a substantial increase of cAMP (Fig. 1 A, triangle). The usage of MHC-disparate T cell populations and the additional staining of CD4+ T cells with CFSE allowed us to exclude a contamination of the FACS Sorted CD4+ T cells with co-cultured naturally occurring T reg cells (Fig. S1, available at http://www.jem.org/cgi/content/full/jem.20062129/DC1). Thus, these data suggested that high concentrations of endogenous cAMP are responsible for the anergic phenotype of naturally occurring T reg cells. Furthermore, the vigorous rise of cAMP in the suppressed CD4+ T cells implied that the suppressive potency of naturally occurring T reg cells is also mediated by cAMP.

Similar to the suppressive effects of naturally occurring T reg cells, dibutyryl-cAMP or the “cAMP-elevating agent” forskolin are also potent inhibitors of IL-2 expression and T cell proliferation (references 10, 14–18; Fig. S2, A–C, available at http://www.jem.org/cgi/content/full/jem.20062129/DC1). Furthermore, addition of IL-2 compensated for the anti-proliferative potency of forskolin and naturally occurring T reg cells for CD4+ T cells (reference 19; Fig. S2 D). Besides the compensatory effect of exogenous IL-2, co-stimulation via CD28 was shown to abrogate naturally occurring T reg cell–mediated suppression (7). Interestingly, co-stimulation via CD28 was recently found to potentiate T cell responses by down-regulating cAMP levels via recruitment of PDE4 to lipid rafts (20). Thus, these observations suggested that naturally occurring T reg cells and cAMP trigger comparable if not identical mechanisms in suppressed CD4+ T cells. Therefore, the influence of naturally occurring T reg cells and forskolin on CD4+ T cell and proliferation of CD4+ T cells was further analyzed. Fig. 1 B demonstrates that forskolin (1 μM) as well as the addition of naturally occurring T reg cells (1:1) increased the concentration of cAMP in CD4+ T cells to identical levels. Moreover, a simultaneous assessment of the proliferation revealed that forskolin and co-cultured naturally occurring T reg cells exhibited the same antiproliferative potency on CD4+ T cells (Fig. S2 C).

To further clarify the function of cAMP in naturally occurring T reg cell–mediated suppression, cAMP activity was...
blocked in CD4+ T cells by a cAMP antagonist, termed Rp-cAMPS (21). Notably, after blockade of cAMP, IL-2 mRNA expression of CD4+ T cells was not substantially altered (unpublished data). However, upon co-culture with naturally occurring T reg cells, the strong inhibitory activity of these cells on IL-2 production of co-cultured CD4+ T cells was neutralized in a concentration-dependent manner. A considerable effect could be observed at a ratio of 1:1 (Fig. 2 B) and inhibition was almost completely abrogated when the number of naturally occurring T reg cells was halved (1:0.5, Fig. 2 B). In addition to the expression of IL-2, the suppressed proliferation of co-cultured CD4+ T cells can also be restored by Rp-cAMPS (Fig. S3, available at http://www.jem.org/cgi/content/full/jem.20062129/DC1). Hence, these findings indicate that cAMP is essentially involved in naturally occurring T reg cell–mediated suppression. Regarding the underlying molecular mechanisms, it has been suggested that the transcriptional repressor ICER attenuates IL-2 expression by binding in competition to the transcription factor CREB (cAMP response element binding protein) to the IL-2 promoter (10). Interestingly, we found that the expression of ICER in CD4+ T cells was enhanced upon co-culture with naturally occurring T reg cells (Fig. S4, calcein-high), indicating that this transcriptional repressor is involved in naturally occurring T reg cell–mediated suppression most likely via cAMP (22).

Although different surface molecules like CTLA-4 and membrane-bound TGF-β were described to be involved, no satisfying explanation for the mechanisms of naturally occurring T reg cell–mediated suppression has been put forward so far (4). Therefore, the question arose whether and how cAMP can be intercellularly transferred from naturally occurring T reg cells to other T cells. With regard to this, GJs have been shown to transport cAMP very efficiently (23). GJs are build from connexins, a well-known family of membrane proteins that could play an as yet unexpected role in naturally occurring T reg cell–mediated suppression. Hence, accumulation of cAMP in suppressed CD4+ T cells implied that it is directly transmitted from naturally occurring T reg cells to suppressed CD4+ T cells via GJ intercellular communication (GJIC). Both naturally occurring T reg cells as well as CD4+ T cells express several members of the connexin family that will allow GJIC (Table S1, available at http://www.jem.org/cgi/content/full/jem.20062129/DC1).

To pursue this model, we used the permeant dye calcein that spreads from donor to recipient cells only via GJ (24). RAG–2–deficient, CD90.2-positive OT-II mice that contain CD4+ T cells, which express a transgenic T cell receptor recognizing OVA233-399 but lacking naturally occurring T reg cells, were immunized with OVA233-399 in CFA in the left hind footpad. 6 h later, preactivated congenic calcein–loaded naturally occurring T reg cells expressing CD90.1 and the same transgenic T cell receptor (OVA233-399) were adoptively transferred. After 24 h, draining and non-draining LNs were prepared and the host CD4+ T cell population was analyzed by FACS staining. CD4+ T cells isolated from the draining LN of immunized mice that were not treated with calcein-loaded naturally occurring T reg cells served as control (Fig. 3 A, left). A substantial part of the CD4+, CD90.1-negative T cells from the draining LNs of immunized mice that received calcein–loaded naturally occurring T reg cells exhibited a strong calcein staining (Fig. 3 A, middle, green). The transferred naturally occurring T reg cells can be identified in this blot as CD90.1-positive cells with high calcein staining (Fig. 3 A, middle, black). In contrast, CD4+, CD90.1-negative T cells from the nondraining LNs prepared from the same mouse did not exhibit any calcein staining, although comparable numbers of transferred naturally occurring T reg cells could also be detected in these LNs (Fig. 3 A, right, black population in top right).

Obviously, only activated CD4+ T cells are qualified to interact with naturally occurring T reg cells by GJIC, suggesting that additional activation-induced surface molecules are required to enable GJIC. According to this, FACS analyses of the early activation marker CD69 revealed that almost all CD4+ T cells from the draining LNs of control mice were activated in the absence of naturally occurring T reg cells (Fig. 3 B, left). In mice that received naturally occurring T reg cells, the CD4+ host T cells that did not contain calcein also exhibited a high expression of CD69 (Fig. 3 B, middle). In contrast, the expression of CD69 was strongly reduced in the host CD4+ T cells, which received calcein from naturally occurring T reg cells, indicating that cell contact is also in vivo required for naturally occurring T reg cell–mediated inhibition by GJIC (Fig. 3 B, middle, green). CD4+ T cells from the nondraining LNs did not express CD69 (Fig. 3 B, right). Hence, these findings demonstrate that only the activation of CD4+ T cells that had received calcein upon contact with the transferred naturally occurring T reg cells was substantially suppressed. Therefore, these data indicate that in vivo a close cell contact and GJIC are
necessary for naturally occurring T reg cell–mediated suppressive activities, whereas soluble mediators like IL-10 or TGF-β do not seem to be directly involved. This assumption is corroborated by publications showing that IL-10– or TGF-β–deficient, naturally occurring T reg cells were functionally not compromised in vitro and in vivo (4–6).

After 20 h, cells were stained with an anti–H2-Kb mAb and GJIC was assessed by analyzing calcine transfer (red, calcine-low; green, calcine-high). [D and E] Simultaneously, CD4+ T cells from the single culture and H2-Kβ-negative, calcine-high (green) or calcine-low (red) CD4+ T cells were reisolated from the co-cultures using FACS-based cell sorting and analyzed for their cytosolic cAMP concentration and the expression of IL-2 mRNA.

(C–E) One representative result of three independent experiments. [F] Conventional CD90.1-positive CD4+ T cells were stimulated in the presence of CD90.2-positive naturally occurring T reg cells or CD90.2-positive naturally occurring T reg cells that had been transfected with Alexa Fluor 488 cAMP. After 20 h, cells were stained for expression of CD90.1 to discriminate CD4+ T cells and T reg cells and analyzed for the diffusion of Alexa Fluor 488 cAMP to CD90.1-positive CD4+ T cells.
To analyze this assumption in more detail, CD4+ T cells and calcein-loaded naturally occurring T reg cells were co-cultivated in vitro. Upon co-culture, CD4+ T cells that received high amounts of calcein from naturally occurring T reg cells (Fig. 3 C, green) and CD4+ T cells that contained no or low amounts of calcein (Fig. 3 C, red) were FACSorted and the cAMP content of both populations was compared. Fig. 3 D illustrates that calcein-high CD4+ T cells harbor high concentrations of cAMP (green bar), whereas calcein-low CD4+ T cells harbor only low concentrations of cAMP (red bar) slightly higher than CD4+ T cells that had been activated in the absence of naturally occurring T reg cells (blue bar). The assessment of IL-2 expression revealed that calcein-high CD4+ T cells that harbor high amounts of cAMP express very low levels of IL-2 (Fig. 3 E, green bar), whereas calcein-low CD4+ T cells that harbor low amounts of cAMP express comparatively high levels of IL-2 (Fig. 3 E, red bar). This oppositional behavior of cAMP content and IL-2 expression clearly indicates that an elevated level of cAMP leads to the inhibition of IL-2 expression. CD4+ T cells activated in the absence of naturally occurring T reg cells expressed even more IL-2 (Fig. 3 E, blue bar) compared with calcein-low CD4+ T cells from the co-culture. This finding can be explained by a floating transition between the calcein-high and -low fraction of co-cultured CD4+ T cells resulting in a reduced IL-2 expression corresponding to a slightly increased cAMP content of the calcein-low CD4+ T cell population. To rule out an additional endogenous production of cAMP in suppressed CD4+ T cells by adenylate cyclases (ADCYs), experiments using ADCY inhibitors were conducted. Unfortunately, all commercially available ADCY inhibitors were toxic for freshly isolated mouse T cells preventing us from using such reagents to solve this question. Therefore, a contributing activation of endogenous ADCYs in suppressed CD4+ T cells cannot be completely excluded. However, because it was published that GJs are permeable for Alexa dyes (25), we used Alexa Fluor 488 cAMP to demonstrate a direct transfer of cAMP via GJIC (Fig. 3 F). The transfer rate was comparatively low, obviously because Alexa Fluor 488 cAMP is considerably larger than cAMP, which strongly implies that cAMP alone can much better trespass the cell membrane. Experiments with calcein-stained and nonstained CD4+ T cells also revealed a GJIC among CD4+ T cells (unpublished data). Because CD4+ T cells contain only minimal concentrations of cAMP the observed GJIC did not lead to any suppression. In addition, it should be noted that separation of naturally occurring T reg cells and CD4+ T cells by transwell cultures not only abrogated naturally occurring T reg cell–mediated suppression but also completely prevented the transfer of calcein (unpublished data). This underscores the cell contact–dependent mechanism of calcein and cAMP transfer via GJ between both cell types.

To further corroborate the participation of GJ in cAMP transport, GJIC should be disrupted. PCR analyses revealed that naturally occurring T reg cells and CD4+ T cells expressed connexin 31.1 (Cx31.1), Cx32, Cx43, Cx45, and Cx46 (Table S1). These connexins can form homo- or heteromeric hexameric hemichannels (connexons), which align in neighboring cells and build up homo- and heterotypic GJ during cell contact (26). This multitude of different GJ required a general inhibitor of GJIC. Unfortunately, substances like 18β-glycerolheretic acid were highly toxic for T cells (unpublished data) or were shown to have other disadvantages like nonspecific side effects and a large size, which can limit their access, especially to the intercellular region of the GJ (27). In contrast, synthetic peptides that mimic connexins have been described to interfere with GJIC. GAP27 was especially described to be a potential GJ inhibitory peptide (27). This peptide is identical in sequence to a portion of an extracellular loop of Cx43 and interferes with both GJ formation and stability. The addition of GAP27 to co-cultures reduced the transfer of calcein to ~50%, whereas a scrambled control peptide (SC-GAP27) did not have any effect (Fig. 4 A). Simultaneously, the suppression of IL-2 mRNA expression in CD4+ T cells upon contact with naturally occurring T reg cells was substantially abrogated by the addition of GAP27, whereas SC-GAP27 had no effect (Fig. 4 B). It was not possible to completely block the transfer of calcein, mostly because GAP27 could not inhibit all potential GJ variants with the same efficiency (27).

In conclusion, these data indicate that naturally occurring T reg cells mediate their suppressive capacity by transferring cAMP into responder cells via GJIC. Our analyses uncovered a new and exciting function for a classical second messenger in combination with an ubiquitous system of intercellular communication. The in vivo relevance of these findings can

In Table S1, we list all expressed connexins. Among them, connexin 31.1 (Cx31.1) and connexin 32 (Cx32) are of special interest due to their contribution to GJ formation (26). Cx31.1 is known to form homotypic GJs, whereas Cx32 is known to form heterotypic GJs (28). The expression of both connexins has been shown to be upregulated in T reg cells (29). Therefore, we investigated the role of these connexins in the GJ-mediated transfer of calcein and cAMP. For this purpose, we used siRNA to specifically knock down the expression of Cx31.1 and Cx32. As shown in the Figure S1, the knockdown of Cx31.1 and Cx32 resulted in a significant reduction of the GJ-mediated transfer of calcein and cAMP, respectively. This suggests that both connexins are involved in the GJ-mediated transfer of calcein and cAMP. However, the exact role of Cx31.1 and Cx32 in the GJ-mediated transfer of calcein and cAMP needs to be further investigated.

In summary, our findings provide new insights into the mechanisms of GJ-mediated transfer of calcein and cAMP. The GJ-mediated transfer of calcein and cAMP is critical for the suppression of immune responses by T reg cells. Therefore, targeting GJ-mediated transfer of calcein and cAMP could be a potential strategy to enhance the efficacy of T reg cells in the treatment of autoimmune diseases.
be deduced from preclinical studies demonstrating that cAMP-elevating agents like vasoactive intestinal peptide or PDE inhibitors like pentoxifylline can alleviate autoimmune diseases via the increase of cAMP in self-reactive effector T cells (28, 29). Thus, the mechanism of action of such agents could be at least partially explained by their influence on naturally occurring T reg cell–mediated suppression.

MATERIALS AND METHODS

Mice. Mice of strains BALB/c and C57BL/6 were obtained from Charles River Laboratories and bred in our own animal facility. OT-II mice, transgenic for the OVA257–264-specific TCR-αβ (30), and RAG2-deficient mice (RAG−/−) were obtained from Charles River Laboratories and bred in our own animal facility. OT-II RAG−/− mice were obtained by intercrossing these lines accordingly. Males and females were used at 6–8 wk of age. All mice used for this study were bred and housed in a specific pathogen-free colony at the animal facility of Johannes Gutenberg University using institutionally approved protocols (permission was obtained from the Landesuntersuchungsamt Koblenz).

Cytokines, antibodies, and reagents. Hybridoma cells producing anti-CD4 mAb GK1.5 were obtained from American Type Culture Collection. PE-labeled anti-CD25 (7D4), PE-Cy7–labeled hamster anti-CD69 (H1.2F3), and all corresponding isotypes PE-labeled rat anti-CD25 (7D4), PE-labeled anti-H2-Kb mAb (AF6-88.5), CD4 mAb GK1.5 were obtained from American Type Culture Collection. Cytokines, antibodies, and reagents.

Preparation of T cell populations. Conventional CD4+CD25− T cells (CD4+ T cells; GK1.5-FITC) and naturally occurring CD4+CD25+ T reg cells (7D4-PE) were isolated as described previously (31). For the detection of cytokines, we used the following combinations of mAbs: IL-2 PE-Cy7 and anti-CD28 mAb (37.51; JES6-1A12 and biotinylated JES6-5H4). The T cell stimulation and proliferation assays.

Assessment of GJIC in vivo. Naturally occurring T reg cells (10^6/ml) were incubated with 1 μM calcein AM in IMDM at 37°C in 5% CO2 for 30 min. The cells were then washed three times with IMDM and stimulated as described above in a 48-well plate in co-culture (2 × 10^6 naturally occurring T reg cells + 2 × 10^6 conventional CD4+ T cells; ratio 1:1) for 20 h. Calcein transfer was detected on a FACS Canto.

mRNA detection. RNA was isolated using Trizol and cDNA was synthesized with RevertAid M-MuLV reverse transcriptase following the recommendations of the supplier (MBI Fermentas). Quantitative RT-PCRs were performed using the following oligonucleotides:

IL-2 forward, GAT TAC AGG GAC ATC TCA GGC TG; EF1α reverse, GAT TAC AGG GAC ATC TCA GGC TG; EF1α forward, GAT TAC AGG GAC ATC TCA GGC TG; EF1α reverse, TAT CTC TTC TGG CAT TAG GGT GG; Cx26 forward, CAA CGC TGC ACG CTC CTC CC; Cx26 reverse, GCC AGG CTG GAG GCT GTT GC; Cx30 forward, TGC AGT GAC TCT TGA GCT GG; Cx30

Polyclonal T cell activation. CD4+ T cells (10^6/ml) from BALB/c mice were activated in the presence of mitomycin C–treated (60 μg/ml/10^7 cells, 30 min) A20 B tumor cells (10^6/ml) and soluble anti-CD3 mAb (3 μg/ml) in the absence or presence of naturally occurring T reg cells (10^6/ml) from BALB/c mice or C57BL/6 mice. To elevate the intracellular cAMP concentration, forskolin was added as indicated.

Transfection of naturally occurring T reg cells. Naturally occurring T reg cells (2 × 10^6 naturally occurring T reg cells/cuvette) were transfected with 240 μM Alexa Fluor 488 cAMP according to the instructions of the manufacturer (AMAXA). Cells were allowed to recover in medium for 2 h. 5 × 10^5 CD90.2 naturally occurring T reg cells were co-cultured with 5 × 10^6 CD90.1 CD4+ T cells in a 96-well round-bottom plate and stimulated for 20 h as described previously (31). Cells were washed with PBS and immunostaining was performed using anti-CD90.1-APC antibody and analyzed on a FACS Canto (BD Biosciences).

Blocking GJIC with the connexin mimetic peptide GAP27. CD4+ T cells from BALB/c mice were stained with CFSE, activated in single or co-culture with naturally occurring T reg cells from C57BL/6 mice in the presence or absence of 300 μM GAP27 or SC-GAP27, respectively. 20 h upon stimulation, the CD4+ T cells were reisolated using FACS-based cell sorting and lysed in Trizol (Invitrogen) to isolate total RNA.

cAMP ELISA. To assess cytosolic cAMP concentrations, T cells were washed three times in ice-cold PBS, lysed in 0.1 N HCl (10^6/ml) and a cAMP-specific ELISA (Correlate EI4 Direct Cyclic AMP Enzyme Immunoassay kit; Assay Design) was performed.

Calcine AM staining and GJIC detection in vitro. Naturally occurring T reg cells (10^6/ml) were incubated with 1 μM calcine AM in IMDM at 37°C in 5% CO2, for 30 min. The cells were then washed three times with IMDM and stimulated as described above in a 48-well plate in co-culture (2 × 10^6 naturally occurring T reg cells + 2 × 10^6 conventional CD4+ T cells; ratio 1:1) for 20 h. Calcein transfer was detected on a FACS Canto.
BRIEF DEFINITIVE REPORT

REFERENCE


Table S1.

<table>
<thead>
<tr>
<th>Connexin</th>
<th>CD4</th>
<th>nTreg</th>
<th>CD4</th>
<th>nTreg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cx30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cx30.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cx31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cx31.1</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Cx32</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Cx37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cx40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cx43</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Cx45</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Cx46</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Cx50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>