Controlling inflammation: a fat chance?

Roderick J. Flower and Mauro Perretti

The inflammatory response protects the body against infection and injury but can itself become deregulated with deleterious consequences to the host. It is now clear that several endogenous biochemical pathways activated during defense reactions can counterregulate inflammation. New experimental evidence adds resolvin E1 to this group of endogenous inhibitors and provides further rationale for the beneficial effects of dietary supplementation with fish oils. It also highlights an unexpected twist in the pharmacology of aspirin.

Polyunsaturated fatty acids and diet

The discovery in the 1930s by George and Mildred Burr (1) that certain polyunsaturated fatty acids were “essential” to the health of mammals begged the question of why they were so crucial. Initially it was thought that their importance lay in their unique viscosifying effect on biological membranes, but the further discovery in the 1960s that all essential fatty acids were also substrates for prostaglandin synthesis by the cyclooxygenase enzymes (2) led to the realization that, in addition to being important structural components of the cell, these lipids were the precursors of potent hormones with widespread effects on the cardiovascular and immune systems. The subsequent demonstration that other mediators such as the leukotrienes (derived from the 5′-lipoxygenase [3]) and, more recently, that the endocannabinoids (4) could also be derived from these same precursors, further highlighted this unusual property of these versatile lipids.

The essential fatty acids, which include arachidonic and eicosapentaenoic acids, cannot be synthesized by mammals de novo but must be supplied in the diet either as the native lipids or as intermediates (5) through desaturation and elongation reactions to the required end product. Arachidonic acid is a 20-carbon fatty acid with 4 unsaturated double bonds located at positions (all cis) 5, 8, 11, and 14 in the hydrocarbon chain (counting from C1, the COOH terminal). Arachidonic acid belongs to a group of fatty acids sometimes known as ω-6 fatty acids, so called because of the location of the final double bond from C20. Since the main source of essential fatty acids is foods (6), it follows that the actual composition of essential fatty acids in the body reflects to a large extent the nature of the diet. Although arachidonic acid is abundant in the tissues of the brown adipose tissue, fish and marine mammals have a preponderance of the closely related eicosapentaenoic acid with five double bonds arranged at positions 5, 8, 11, 14, and 17 (thus belonging to the ω-3 group). It has been suggested (5) that mankind evolved on a diet where the ratio of ω-6:ω-3 fatty acids was ∼1:1, as opposed to the prevailing ratio (at least in Western societies) of 10–20:1. The implication is that the onset and progress of many inflammatory and other diseases may be exacerbated by this shift in dietary habits.

When oxidized by the cyclooxygenase enzyme systems, arachidonic acid gives rise to the “2” series of prostaglandins such as PGE

₂, PGF

₂, and so on, because of the loss of two unsaturated bonds during the cyclooxygenase reaction, and to the “4” series of leukotrienes, such as LTB

₄. However, the properties of eicosapentaenoic acid in this respect are quite different. To begin with, eicosapentaenoic acid is not a particularly good substrate for the cyclooxygenase and actually competitively inhibits arachidonic acid oxidation in vitro (6). PGE

₁ is produced from eicosapentaenoic acid by the cyclooxygenase but is less active than PGE

₂ in producing various biological effects relevant to inflammation (7). Eicosapentaenoic acid is, however, a good substrate for lipoxigenases, although LTB

₄ is ∼30 times less active as an activator of neutrophils than LTB

₄ (8).

It had been deduced from epidemiological and dietary studies of different populations, such as the Greenland Eskimos (9), that a preponderance of fish in the diet was generally associated with a reduced incidence of inflammatory and cardiovascular disease. Over the years, a great number of studies have tested extracts of fish oil (which usually contain a mixture of eicosapentaenoic acid together with other associated fatty acids such as docosahexaenoic acid) as dietary supplements, finding a beneficial effect in a wide range of human inflammatory conditions including rheumatoid arthritis (10), cystic fibrosis (11), ulcerative colitis (12), UV-induced skin damage (13), septic shock (14), and asthma (15). Patients fed diets rich in eicosapentaenoic acid have been shown to express fewer inflammatory biomarkers (16), reduced leukocyte activation and mobility (17), and diminished production of prostaglandins and platelet-activating factor ex vivo (14); similar effects have been seen in many animal studies (18). Eicosapentaenoic acid is, therefore, one of the few “nutriceuticals” for which there is compelling evidence of efficacy, although the optimum dosage has perhaps yet to be established.

Explaining the beneficial effects

The most widely accepted explanation for the efficacy of eicosapentaenoic acid was that increasing proportions of this fatty acid incorporated into the cellular phospholipid pool reduces the net fraction of arachidonic acid released during cell activation, leading to less arachi-
whole idea of antiinflammatory lipids
Serhan’s group has now placed the
extending his observations into man,
phase of murine inflammation (24). By
pound previously found by the group
pentapentaenoic acid) which is subsequently
droxy-6Z, 8E, 10E, 14Z, 16E-eicosa-
apentaenoic acid (5S, 12R, 18R-trihy-
by the aspirin-treated cyclooxygenase
Arita et al. describe the generation,
and neuroprotectins (23). In this issue,
the lipoxins, resolvins, docosatrienes,
rived from arachidonic acid, including
groups of potent lipid mediators de-
tory mechanism (22).
But other explanations for the effi-
cacy of eicosapentaenoic acid have also
been suggested. It has been postu-
lated, for example, that 15-lipoxygen-
ase products of eicosapentaenoic acid
themselves can interfere with the acti-
vation of the transcription factor
FKB and thus prevent the activation of
inflammatory genes (20), or that eico-
apentaenoic acid blocks the terminal
stages of arachidonic acid synthesis
from its precursors in vivo (21). But in
this issue (page 713), Arita et al. have
come up with another fascinating
observation which relates directly to
the efficacy of eicosapentaenoic acid as
a potential antiinflammatory in man
and, interestingly enough, implicates
another popular therapeutic agent, as-
pirin, in a unique joint antiinflamma-
tory mechanism (22).

The work described by Arita et al.
(22) follows earlier discoveries by this
team, lead by Charlie Serhan, of other
groups of potent lipid mediators de-
rived from arachidonic acid, including
the lipoxins, resolvins, docosatetraenes,
and neuroproteins (23). In this issue,
Arita et al. describe the generation,
by the aspirin-treated cyclooxygenase
(COX)-2, of a 15-epi product of eicos-
apentaenoic acid (5S, 12R, 18R-trihy-
droxy-6Z, 8E, 10E, 14Z, 16E-eicosa-
apentaenoic acid) which is subsequently
transformed to resolvin E1, a com-
pound previously found by the group
to be present during the resolution
phase of murine inflammation (24). By
extending his observations into man,
Serhan’s group has now placed the
whole idea of antiinflammatory lipids
on a new and more relevant therapeutic
footing.
The mechanism described here is
an interesting one for several reasons.
In contrast to its action on COX-1, as-
pirin does not totally inhibit the oxida-
tion of arachidonic acid (or other poly-
unsaturated fatty acid substrates) by
COX-2 (25), and although the aspirin-
inhibited enzyme cannot produce pro-
staglandins it retains the ability to gener-
ate a monohydroxy fatty acid species.
The most likely source of the COX-2
in this instance is the endothelial cell.
In the presence of eicosapentaenoic
acid and when “inhibited” by aspirin,
COX-2 can release the 18R-hydroxy
eicosapentaenoic acid precursor of re-
solvin E1. However, this moiety can-
not be further metabolized by the
endothelial cell itself, and its transfor-
mation to resolvin E1 depends on the
presence of the 5-lipoxygenase enzyme
in adjacent leukocytes that are presum-
ably adherent to the vessel wall (Fig. 1).
The resolvin E1 product was measured
in bioactive concentrations in the
plasma of volunteers taking both eicos-
apentaenoic acid (1 g) and low dose as-
pirin (160 mg).

Versatility of G protein–
coupled receptors
The striking antiinflammatory activity
of lipoxin A₄ (LXA₄) as an inhibitor of
leukocyte activation, as earlier described
by Serhan’s group (26), was rather sur-
prisingly manifested through interaction
with a member of the formyl peptide
receptor (FPR) family termed ALXR
(or FPR-like 1). This finding was un-
expected, as this family of receptors,
which comprises at least three subtypes
in humans, is generally considered to be
a promotor rather than an inhibitor of
leukocyte chemotaxis and activation
(27). However, the recent notion that
another endogenous antiinflammatory
protein, annexin 1, also acts through
ALXR reinforces the concept that this
receptor may also have a protective an-
tiinflammatory function (28).

As in the case of LXA₄, Serhan’s
group has found that resolvin E1 exerts
its antiinflammatory effects by acting
through a G protein–coupled receptor
to down-regulate NF-κB activation
(22). This receptor (subsequently re-
ferred to as ChemR23), which seems
fairly widely distributed in human tis-
sues, is related to ALXR and was origi-

Figure 1. Resolvin E1 and its receptor; a novel antiinflammatory circuit. Transcellular synthesis
of resolvin E1 from diet-ingested eicosapentaenoic acid (EPA) occurs within the microcirculation by the
concerted action of endothelial cell COX-2 and neutrophil 5-lipoxygenase (5-LO). After aspirin treatment,
resolvin E1 synthesis occurs even in the absence of inflammation. Aspirin inactivates COX-2 but per-
mits continuing generation of the intermediate 18R-hydroxy-EPA which is converted to resolvin E1
(or 5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) by the 5’ lipoxygenase in
adjacent neutrophils. This lipid can then act in a paracrine or autocrine fashion on a specific seven-
transmembrane G protein–coupled receptor, termed ChemR23, to bring about inhibitory effects on
leukocyte activation presumably with reduced synthesis and reduced release of proinflammatory media-
tors: the end point of resolvin E1-ChemR23 mediated effects is a reduced flux of blood-borne cells
into the site of inflammation.
nally described as a receptor for a chemotactic peptide called chemerin. The promiscuity of the FPR family of seven-transmembrane G protein–coupled receptors may be gauged by the number and diversity of the ligands they recognize, which include lipids, peptides, proteins, bile acids, and even enzymes. It seems that Serhan’s group has uncovered an additional example of a series of lipids that exert their activities by binding to a receptor that might, under other circumstances, actually promote leukocyte chemotaxis (22). It is likely that receptors such as FPR, ALXR, and ChemR23 can assume ligand-specific conformations, hence transducing signals specific to each agonist. This concept has been advanced for several G protein–coupled receptors (29), including those of the FPR family (30).

The lure of endogenous antiinflammatories

The notion that the inflammatory response generates its own regulators in tandem with the better known proinflammatory mediators such as prostaglandins and leukotrienes makes sense from the cybernetic viewpoint as it is easier to control a process with both positive and negative regulatory inputs. Indeed, several other instances of endogenous regulators of the inflammatory response (31) have been characterized recently (32), adding support to the idea that this is a widely employed mechanism. Clearly, disturbances in such counterregulatory circuits could lead to exacerbated inflammatory responses just as effectively (although perhaps less obviously) than excessive activation of the proinflammatory cascades.

Aspirin: more than one mechanism?

This study also throws into sharp relief why and how aspirin and omega-3 polyunsaturated fatty acids have been shown already to be beneficial in these conditions as well. For example, the data reported in the GISSI (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico) study (35), quoted by the authors, demonstrates a beneficial effect of eicosapentaenoic acid in patients at risk for myocardial infarction, many of whom were taking aspirin. In the light of the evidence presented by Serhan’s group (22), we should now also take a closer look at the aspirin–eicosapentaenoic acid interactions in the cardiovascular arena. We need to discover any direct effects resolvin E1 may have on platelet function and to investigate whether any beneficial effects that may be seen in cardiovascular disease depend on the antiinflammatory effects of this compound or on other actions.

REFERENCES

