VEGF$_{164}$-mediated Inflammation Is Required for Pathological, but Not Physiological, Ischemia-induced Retinal Neovascularization

Susumu Ishida, Tomohiko Usui, Kenji Yamashiro, Yuichi Kaji, Shiro Amano, Yuichiro Ogura, Tetsuo Hida, Yoshihisa Oguchi, Jayakrishna Ambati, Joan W. Miller, Evangelos S. Gragoudas, Yin-Shan Ng, Patricia A. D’Amore, David T. Shima, and Anthony P. Adamis

Abstract

Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF$_{164}$ increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF$_{164}$-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF$_{164}$-deficient (VEGF$_{120/188}$) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF$_{197/11001}$/H11001) controls. In contrast, administration of a VEGFR-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte–mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF$_{164}$ selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined.

Key words: retina • angiogenesis • VEGF • leukocyte • immunity

Introduction

Retinal neovascular diseases such as retinopathy of prematurity and proliferative diabetic retinopathy are the major causes of neonatal and adult blindness. During both physiological retinal vascular development (1) and pathological proliferative retinopathy (2), new blood vessel growth is regulated by vascular endothelial growth factor (VEGF), a hypoxia-induced endothelial cell–specific mitogen produced in ischemic retinal cells. Although both types of
neovascularization stem from retinal ischemia, there is an
essential difference in the direction of vessel growth dur-
ing physiological and pathological neovascularization. In
the former, new vessels extend from the optic disc toward
the peripheral avascular retina, and follow the guidance of
VEGF-expressing retinal astrocytes (2). During pathologi-
cal neovascularization, although ischemic retinal astro-
cytes and neurons express VEGF (1), the new vessels in-
vade the vitreous cavity. This ectopic neovascularization
leads to fibrovascular proliferation, resulting in vision-
threatening complications, such as vitreous hemorrhage and
traction retinal detachment. Coincident with the patho-
logical neovascularization, the once-vascularized and newly
ischemic central areas of the retina are re-invested with
normal-appearing blood vessels, a process termed “revas-
cularization.” When reagents that block all VEGF iso-
forms are used, this compensatory intraretinal revascu-
larization is suppressed together with the pathological
neovascularization (3). Thus, ophthalmologists await the
establishment of a new therapy that selectively targets
pathological neovascularization, while sparing compensa-
tory revascularization.

The current paper demonstrates that the differential ex-
pression of VEGF 165 results in leukocyte adhesion at the
leading edge of pathological, but not physiological, neovas-
cularization. Furthermore, differential functions for the
various leukocyte subpopulations recruited to the sites of
neovascularization are demonstrated here. As a result, new
mechanistic differences are uncovered at the molecular and
cellular levels between the physiological and pathological
neovascularization.

Materials and Methods

Rat Model of Proliferative Retinopathy. All animal experiments
followed the Association for Research in Vision and Ophthal-
mology guidelines and were approved by the Animal Care Com-
mittee of Massachusetts Eye and Ear Infirmary. Long-Evans rats
(Charles River Laboratories) were used. Postnatal day zero (P0)
rats with their nursing mothers were maintained for 10 full days
in 80% oxygen, interrupted daily by 30 min in room air followed
by a progressive return to 80% oxygen, to induce an avascular
retina. On P10 (D0), they were placed in room air for an addi-
tional 7 d (D7) to induce retinal neovascularization.

ELISA for VEGF. After sacrifice with an overdose of anes-
thesia, the eyes were immediately enucleated. The retina was
carefully isolated, placed into 150 μl of lysis buffer, and sonicated.
The lysate was centrifuged at 14,000 rpm for 15 min at 4°C, and the
VEGF levels in the supernatant were determined with the Quantikine
mouse VEGF ELISA kit (R&D Systems) according to the manufacturer’s protocol. The assay recognizes all VEGF isoforms.

Reverse Transcription (RT)–PCR for VEGF. Total RNA
was isolated from the retina and peripheral monocytes with TRIzol
reagent (Life Technologies), and cDNA was produced using reverse transcriptase (SuperScript II; Invitrogen). The primer
sequences for GAPDH and rat VEGF were 5′-CCATG-
GAGAAGGCCTGGG-3′ (sense) and 5′-CAAGCTGTCG-
TAGGATGACC-3′ (antisense) for GAPDH and 5′-ACCTC-
CACCCTGCAAAT-3′ (sense) and 5′-TAGTTCCGGAA-
ACCCTGA-3′ (antisense) for VEGF. Analysis of RT-PCR data
was performed using the intensity ratios of VEGF 165/VEGF 120 in
each lane.

Lectin Labeling of Retinal Vasculature and Adherent Leukocytes. The retinal vasculature and adherent leukocytes were imaged by
perfusion-labeling with FITC-coupled Concanavalin A lectin
(Con A; Vector Laboratories) as described previously (4). The flat
mounts were imaged using two epifluorescence microscopes
(models DM RXA and MZ FLIII; Leica), each possessing a dif-
frent range of magnification.

Intravitreous Injection of Anti-VEGF 165 Aptamer (EYE001). Af-
ter deep anesthesia, an eyelid fissure was created with a fine blade
to expose the eyeball. Intravitreous injections were performed by
inserting a 33-gauge double caliber needle (Ito Corporation) un-
der an operating microscope. Animals received intravitreous injec-
tions of 1 μl of sterile PBS containing 0.5 nmol of a pegylated
anti-VEGF 165 aptamer (EYE001; Eyetech Pharmaceuticals) or
polyethylene glycol (PEG) control. Retinal neovascularization
and leukocyte adhesion were evaluated 7 d after administration in
D0 (P10) retinopathy rats and P3 normal neonates.

The anti-VEGF 165 aptamer is an oligonucleotide that binds to
the exon 7-encoded domain of human VEGF 165 protein with
high specificity and affinity. The oligonucleotide is conjugated
to a 40-kD PEG moiety to increase its half-life. The aptamer
does not bind to VEGF 120/121 and efficiently neutralizes VEGF 165
in rats.

Intravitreous Injection of a VEGFR-1/Fc Fusion Protein. Ani-
mals received 1 μl intravitreous injections of sterile PBS contain-
ing 1 μg of a mouse VEGFR-1/Fc chimera (R&D Systems) or
an isotype Fc control (R&D Systems). The fusion protein blocks
all VEGF isoforms. A maximal effect dosage (1 μg per eye) was
determined and used for comparison with the maximal effect dosage
of the anti-VEGF 165 aptamer.

Generation of VEGF 120/121-deficient (VEGF 120/121) Mice. VEGF 120/121
male and VEGF 165/165 female mice, generated previously (5) via
targeted mutagenesis with Cre/loxP-mediated site-specific re-
combination in embryonic stem cells, were mated to each other.
Sired neonates were genotyped as described previously (5) to se-
lect VEGF 165-deficient (VEGF 120/121) mice and age-matched
wild-type control (VEGF 120/121) mice for analysis at P10.

CD13, CD8, and CD25 Immunofluorescence. Adherent leu-
kocytes were labeled with rhodamine–coupled Con A as de-
scribed above in the fourth paragraph of Materials and Methods.
Retinal flat mounts were permeabilized with 0.5% Triton X
(Sigma-Aldrich) in PBS for 24 h and nonspecific binding was
blocked with 1% BSA. The retinas were incubated with a FITC-
conjugated mouse monoclonal antibody against CD13 (clone
WM15, 1:100; Research Diagnostics), CD8 (clone OX-8, 1:100;
Research Diagnostics), or CD25 (clone OX-39, 1:100; Research
Diagnostics) overnight at 4°C.

Isolation and Hypoxic Stimulation of Monocytes. Blood was
drawn from D7 rats with retinopathy before sacrifice. The mono-
cytes were purified by positive selection via magnetic cell sorting (MACS) using MicroBeads conjugated with a monoclonal anti-
rat MHC-II antibody (clone OX-6; Miltenyi Biotec) according
to the manufacturer’s instructions. The isolated monocytes were
seeded at a concentration of 2.5 × 10^6 cells per dish and stimu-
lated for 8 h at 37°C with 1 or 21% oxygen in a humidified air-
tight chamber (Modular Incubator Chamber; Billups-Rothen-
berg). The incubated cells were collected and processed for
RT-PCR for VEGF as described above in the third paragraph of
Materials and Methods.

Intravitreous Administration of Clodronate-liposomes. Clodro-
nate (dichloromethylene diphosphonate) was a gift from Roche
Diagnostics. Animals with retinopathy received 1-μl intravitreal injections of clodronate- or PBS-liposomes on D0 (P10). The degree of retinal neovascularization was evaluated 7 d later.

Systemic CD2 Blockade. Rats with retinopathy received intraperitoneal injections of 5 mg/kg/day of a mouse anti-rat CD2 neutralizing antibody (clone OX-34; Research Diagnostics) or a mouse isotype nonimmune antibody (R&D Systems). The reagents were injected for seven consecutive days before evaluation on D7 (P17).

Endothelial and Lymphocyte Cocultures. Blood was drawn from D7 rats with retinopathy and age-matched (P17) controls before sacrifice. Cytotoxic T lymphocytes (CTLs) were purified by positive selection via MACS using MicroBeads conjugated with a monoclonal anti-rat CD8a antibody (clone G-28; Miltenyi Biotec) according to the manufacturer’s instructions. Human microvascular endothelial cells (Cascade Biologics, Inc.) at passage 6–8 were seeded at a concentration of 2 × 10^4 cells per well and stimulated with 30 ng/ml recombinant human tissue necrosis factor-α (TNF-α; R&D Systems). Isolated CTLs were incubated for 15 min at 37°C with 50 μM carboxyfluorescein diacetate succinimidyl ester (CFDASE; Molecular Probes). The fluorescent cells were washed and incubated (8 × 10^5 cells/ml, 100 μl per well) with endothelial monolayers for 4 h, after which nonadherent lymphocytes were removed and the endothelial monolayer was washed. To examine whether the apoptosis is FasL–mediated, an anti–mouse FasL antibody (clone MFL4; BD Biosciences) or an isotype control antibody (BD Biosciences) was applied at 10 μg/ml for 10 min at 37°C to the T cell suspension before the coculture. Cell death was assayed using the TUNEL procedure according to the manufacturer’s instructions (Intergen). Apoptotic cells were detected using a CD-330 charge-coupled device camera (Dage-MIT) attached to an epifluorescence microscope (model MZ FLIII; Leica). A minimum of eight fields each in three separate experiments was analyzed per condition.

Morphometric and Statistical Analysis. All results were expressed as mean ± SD. The number of leukocytes in each flat mount was counted independently by two investigators under an epifluorescence microscope (DM RXA; Leica). The morphology of the pathological neovascularization was readily discerned from the retinal extension of physiological vessels. The neovascular retinal areas were photographed with an epifluorescence microscope (DM RXA; Leica) and measured using NIH Image. The values were processed for statistical analyses (Mann-Whitney U test). Differences were considered statistically significant when the P values were <0.05.

Results

VEGF Expression in Physiological and Pathological Retinal Neovascularization. Absolute and relative VEGF isoform expression levels were studied during both physiological vascular development (Fig. 1, A and C) and pathological neovascularization (Fig. 1, B and D). ELISA results showed that retinal VEGF protein levels were approximately twofold higher in the pathologically neovascularizing retina (Fig. 1 B) than in the developing retina undergoing physiological neovascularization (Fig. 1 A). RT-PCR showed a substantial relative difference in VEGF isoform expression pattern between pathological (Fig. 1 D) and physiological (Fig. 1 C) neovascularization. The VEGF₁₆₄/VEGF₁₂₀ expression ratio was calculated to be 2.2 ± 1.1 in the physio-

![Figure 1](https://example.com/figure1.png)

Figure 1. Differential expression of VEGF isoforms during physiological and pathological retinal neovascularization. (A) Retinal VEGF protein levels (all isoforms) during postnatal development. (B) Retinal VEGF protein levels after the induction (D0) of pathological neovascularization. Dotted lines in A and B indicate the constitutive VEGF levels in normal adult rats. (C) Retinal VEGF mRNA expression during postnatal development. (D) Retinal VEGF mRNA expression after the induction of pathological neovascularization. The relative expression levels of VEGF₁₆₄ increased dramatically during pathological neovascularization.

![Physiological and Pathological Retinal Neovascularization](https://example.com/physio-patho.png)

![VEGF Expression](https://example.com/vegf-expression.png)

![Morphometric and Statistical Analysis](https://example.com/morpho-stat.png)

Effect of VEGF₁₆₄-specific Blockade on Physiological and Pathological Retinal Neovascularization. A VEGF₁₆₄ isoform–specific neutralizing aptamer (EYE001) was used to determine the role of VEGF₁₆₄ in pathological neovascularization. During pathological neovascularization (Fig. 3, A–F), VEGF₁₆₄ blockade (Fig. 3 B) led to a significant inhibition of leukocyte adhesion (Fig. 3 D) and pathological neovascularization (Fig. 3 E). In contrast, little or no suppression of revascularization (Fig. 3 F) and physiological neovascularization (Fig. 3, G, H, and J) was observed.
When a VEGFR-1/Fc chimeric protein was used to compare the neutralizing effects of the single VEGF₁₆₄ isoform versus all VEGF isoforms, VEGF pan-isoform blockade (Fig. 3 C) resulted in a significant suppression of leukocyte adhesion (Fig. 3 D) and pathological neovascularization (Fig. 3 E). The result was similar to that seen with VEGF₁₆₄-specific blockade. However, in contrast to the VEGF₁₆₄ inhibition result, a significant suppression of revascularization (Fig. 3 F) and physiological neovascularization (Fig. 3, I and J) was observed with pan-isoform blockade. No difference was detected in physiological and pathological neovascularization among the following control groups: nontreated, PEG-treated, and Fc-treated rats (unpublished data). To further confirm the VEGF₁₆₄ neutralizing effect on retinal vascular development, VEGF₁₆₄-deficient mice were generated and evaluated. No difference in physiological and pathological neovascularization among the following control groups: nontreated, PEG-treated, and Fc-treated rats (unpublished data). To further confirm the VEGF₁₆₄ neutralizing effect on retinal vascular development, VEGF₁₆₄-deficient mice were generated and evaluated. No difference in physiological neovascularization was detected between wild-type (VEGF_{H11001}/H11001) mice and VEGF₁₂₀/₁₈₈ mice (Fig. 3, K–M).

Monocytes Are Positive Regulators of Pathological Retinal Neovascularization. To investigate the role of monocytes in pathological neovascularization, clodronate-liposomes were used to inactivate monocyte lineage cells. Compared with PBS-liposomes (Fig. 4 A), monocyte-selective depletion (Fig. 4 B) led to a significant suppression of pathological neovascularization (Fig. 4 C), but had negligible effect on revascularization (Fig. 4 D). Immunohistochemistry confirmed that a subset of the adherent leukocytes in the
kocytes at the vascular fronds were positive for CD8 (Fig. 5, D–F) and CD25 (Fig. 5, G–I; IL–2 receptor), indicative of cytotoxic and activated T lymphocytes, respectively. To determine whether CD8–positive cytotoxic T lymphocytes (CTLs) isolated from rats with retinopathy cause a FasL-mediated endothelial cell apoptosis, cell death was evaluated using a leukocyte–endothelial coculture system. Compared with CTLs isolated from age-matched normal control rats (Fig. 5 J), CTLs from rats with retinopathy (Fig. 5 K) increased endothelial cell apoptosis (Fig. 5 N).

Figure 3. Effect of VEGF164-specific blockade on physiological and pathological retinal neovascularization. (A–F) VEGF164-specific blockade versus VEGF pan-isoform blockade in pathological neovascularization. (A) Pathological neovascularization (arrows, D7) treated with PEG control (n = 12) was not inhibited. (B) Pathological neovascularization (arrows, D7) treated with the anti-VEGF165 aptamer (n = 13). (C) Pathological neovascularization (arrows, D7) treated with the VEGFR-1/Fc chimera (n = 10). In addition to the inhibition of leukocyte adhesion to the retinal vasculature (D, P < 0.01), pathological neovascular budding into the vitreous (E, PaNV) was significantly suppressed (P < 0.01) via the anti-VEGF164 aptamer or the VEGFR-1/Fc. In contrast, the effect of VEGF164 inhibition on physiological revascularization (F, PhRV) was negligible (P > 0.05), but pan-isoform inhibition led to significant suppression of revascularization (F, P < 0.01). Shaded bars indicate comparable values of age-matched (P17) normal rat neonates (n = 8). (G–J) VEGF164-specific blockade versus VEGF pan-isoform blockade in retinal vascular development. (G) Developing retinal vasculature (P10) treated with PEG control (n = 7). (H) Developing retinal vasculature (P10) treated with anti-VEGF164 aptamer (n = 8). (I) Developing retinal vasculature (P10) treated with the VEGFR-1/Fc chimera (n = 10). (J) Note the mild suppression of physiological revascularization during retinal development via VEGF164 inhibition, but the substantial suppression via pan-isoform inhibition (P < 0.01). (K–M) VEGF164-specific deficiency versus wild type in retinal vascular development. (K) Developing retinal vasculature (P10) in wild-type control (VEGF+/−) mice (n = 13). (L) Developing retinal vasculature (P10) in VEGF164−/− mice (n = 13). (M) VEGF164 deficiency had no significant effect on physiological neovascularization (P > 0.05). Bars: (K and L) 0.2 mm; (A–C and G–I) 0.5 mm.

Administration of a FasL neutralizing antibody (Fig. 5 L), but not a control nonimmune antibody (Fig. 5 M), led to significant suppression of the apoptosis caused by the CTLs isolated from the rats with retinopathy (Fig. 5 N).

Discussion

The current data demonstrate that pathological, but not physiological, retinal neovascularization is characterized by the overexpression, both in relative and absolute terms, of the VEGF164 isoform. The hypoxia-induced VEGF164 isoform expression leads to the recruitment of leukocytes to sites of pathological neovascularization. These data demonstrate that ischemia-induced neovascularization, classically thought to be noninflammatory in nature, is characterized by the influx of inflammatory cells.

Monocyte/macrophage lineage cells express VEGF receptor (R)-1 through which VEGF exerts its chemotactic actions (6). VEGF also up-regulates the expression of ICAM-1 on vascular endothelial cells in vitro (7). VEGF-induced blood–retinal barrier breakdown was demonstrated to be leukocyte-dependent, in part, when the inhibition of ICAM-1 prevented blood–retinal barrier breakdown in VEGF165-injected rat eyes (8). In separate studies, VEGF-induced endothelial ICAM-1 expression (9) and vascular leakage (10) were shown to be mediated by VEGFR–2. Thus, VEGF functions as a proinflammatory cytokine targeting both leukocytes and endothelial cells. Taking into account the differential affinity of the VEGF isoforms for VEGF receptor binding (11, 12), VEGF165 seemed likely to be more responsible for the induction of inflammation than VEGF121.

The present work is the first to show that adherent leukocytes are associated with the leading edge of pathological, but not physiological, neovascularization (Fig. 2). The re-
The present paper shows that IL-2 receptor (CD25)-positive cells and CD8-positive cells adhere to the pathological neovascular fronds (Fig. 5), indicative of the presence of activated CTLs. In a murine tumor model, the systemic administration of IL-12 and IL-2, both known to activate cellular immunity, led to the recruitment of FasL-positive CTLs and the inhibition of tumor neovascularization and growth (14). Conversely, an angiogenic role of T lymphocytes, a source of VEGF, has been suggested in human prostate cancer (15). The present paper demonstrates that the inhibition of lymphocyte function results in the aggravation of pathological neovascularization (Fig. 5). In our model of pathological retinal neovascularization, CTL-mediated cellular immunity is thought to play a critical role in the defense against the ectopic proliferation of endothelial cells. This is also supported by the findings that CD8-positive T lymphocytes from rats undergoing pathological neovascularization resulted in the FasL-mediated apoptosis of endothelial cells in vitro (Fig. 5). The role of immunotherapy for retinal neovascular diseases is currently under investigation.

Figure 5. Role of T lymphocytes in pathological retinal neovascularization. (A) Pathological neovascularization (arrows, D7) treated with nonimmune isotype control (n = 9) showing a similar degree of pathological vascular budding (arrows) compared with Fig. 2E. (B) Pathological neovascularization (arrows, D7) treated with anti-CD2 antibody (n = 11). Notably, the pathological neovascular budding (C, PaNV) was worsened (P < 0.01), (D–I) T cell subtypes in pathological neovascular buds. Green fluorescence from the antibody against CD8 or CD25 (D and G) and red fluorescence from the rhodamine-coupled Con A (E and H) identifies the Con A-stained cells as being CD8- and CD25-positive leukocytes (arrows) when the images were superimposed (F and I). (J–N) Rhoamine-labeled apoptotic cells in the leukocyte–endothelial cocultures were detected via TUNEL staining (red). CTLs were labeled with Rhodamine-labeled apoptotic cells in the leukocyte–endothelial cocultures (arrows) when the images were superimposed (A and B). (A and B) 0.5 mm.
This work was funded by Eyetech Pharmaceuticals. Drs. Adamis and Shima are employees and shareholders of Eyetech Pharmaceuticals. The anti-VEGF165 aptamer used in these experiments is a product of Eyetech Pharmaceuticals and is currently in clinical trial.

Submitted: 21 November 2002
Revised: 13 May 2003
Accepted: 23 May 2003

References

