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Abstract

 

Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, can be in-
duced by immunization with a number of myelin antigens. In particular, myelin oligodendro-
cyte glycoprotein, a central nervous system (CNS)-specific antigen expressed on the myelin
surface, is able to induce a paralytic MS-like disease with extensive CNS inflammation and de-
myelination in several strains of animals. Although not well understood, the egress of immune
cells into the CNS in EAE is governed by a complex interplay between pro and antiinflamma-
tory cytokines and chemokines. The hematopoietic growth factor, granulocyte macrophage
colony-stimulating factor (GM-CSF), is considered to play a central role in maintaining
chronic inflammation. The present study was designed to investigate the previously unexplored
role of GM-CSF in autoimmune-mediated demyelination. GM-CSF

 

�

 

/

 

�

 

 mice are resistant to
EAE, display decreased antigen-specific proliferation of splenocytes, and fail to sustain immune
cell infiltrates in the CNS, thus revealing key activities for GM-CSF in the development of in-
flammatory demyelinating lesions and control of migration and/or proliferation of leukocytes
within the CNS. These results hold implications for the pathogenesis of inflammatory and de-
myelinating diseases and may provide the basis for more effective therapies for inflammatory
diseases, and more specifically for multiple sclerosis.

Key words: multiple sclerosis • experimental autoimmune encephalomyelitis • GM-CSF • 
myelin oligodendrocyte glycoprotein • immune therapy

 

Introduction

 

Experimental autoimmune encephalomyelitis (EAE)

 

*

 

, a
CD4

 

�

 

 T cell–mediated inflammatory demyelinating disease
of the central nervous system (CNS) serves as an experi-
mental model of the human disease, multiple sclerosis (MS;
reference 1). EAE can be induced by immunization with a
number of myelin antigens or by adoptive transfer of my-
elin-reactive CD4

 

�

 

 T cells into naive recipients. Histori-
cally, myelin basic protein and proteolipid protein, the ma-

jor proteins of CNS myelin, were identified as the major
encephalitogenic antigens in EAE (2, 3). However, a num-
ber of laboratories have now focused their attention to the
autoimmune response to myelin oligodendrocyte glyco-
protein (MOG), a quantitatively minor myelin protein.
MOG is of particular interest because it is a CNS-specific
antigen expressed on the myelin surface that is able to in-
duce a paralytic MS-like disease with extensive CNS in-
flammation and demyelination in several strains of animals
(4–6). Of particular interest is the fact that C57BL/6 mice
exhibit a chronic nonremitting disease while NOD/Lt
mice develop a severe relapsing-remitting disease (4, 7),
thus making this model a useful tool to study the two most
common clinical forms of MS.

Although the aetiological events and the molecular
mechanisms leading to autoimmune demyelination are not
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fully understood, work in our and other laboratories has
indicated that the activation and recruitment of lympho-
cytic and mononuclear cells to the CNS is a necessary step
in the development of pathological inflammatory lesions.
The egress of immune cells into the CNS is governed by a
complex interplay between cytokines, chemokines, and
adhesion molecules. Many studies have shown that the
differential production of such pro-(Th1) and anti-(Th2)
inflammatory molecules mediates and modulates the
course of disease. The hematopoietic growth factor, GM-
CSF, was first considered to be proinflammatory because
of its ability to stimulate macrophage plasminogen activa-
tor activity (8). A number of subsequent studies have
shown that it can also regulate the many functions of ma-
ture myeloid cells (9), for example, activation of dendritic
cells (DCs; reference 10), necessary for T cell activation by
foreign proteins, induction of monocyte/macrophage
MHC class II expression (11), enhancement of the phago-
cytic activity and antigen presenting function of macro-
phages and/or microglia (12, 13), priming of monocytes
for cytokine production (14, 15), and enhancement of
macrophage and granulocyte adherence (16, 17). A cyto-
kine network of general relevance has been proposed in
which GM-CSF has a central role in maintaining chronic
inflammation (18).

The proinflammatory role of GM-CSF has been dem-
onstrated using various models of inflammation and im-
munity. We have shown that administration of rGM-CSF
accelerates onset and exacerbates the pathology of murine
collagen-induced arthritis (CIA; reference 19) while GM-
CSF–deficient mice show decreased susceptibility to CIA
(20). GM-CSF–deficient mice also show exacerbated sus-
ceptibility to infection with 

 

Listeria monocytogenes

 

, which
correlates with a poor inflammatory response and failure
to maintain a supply of phagocytic cells over the long
term (21). Transgenic mice expressing GM-CSF, driven
by a constitutive promoter, demonstrate an excessive ac-
cumulation and activation of macrophages and granulo-
cytes (22, 23) and local expression of GM-CSF in the
stomach is sufficient to initiate autoimmune gastritis (24).
In light of these observations and given that elevated lev-
els of GM-CSF have been shown to correlate with the ac-
tive phase of MS (25), it is possible that GM-CSF may
play a role in initiating or sustaining immune responses in
autoimmune inflammatory and demyelinating diseases
such as MS and EAE.

Therefore, this study was designed to examine
whether GM-CSF was critical for initiation and/or pro-
gression of EAE. For this, we have used GM-CSF–defi-
cient (GM-CSF

 

�

 

/

 

�

 

) mice that have been backcrossed
onto an EAE-susceptible NOD/Lt background. Mice
with a disrupted GM-CSF gene show no major perturba-
tion of hematopoiesis (26, 27) and can mount both pri-
mary cell-mediated and humoral immune responses (28).
Here, we report that GM-CSF

 

�

 

/

 

�

 

 mice are resistant to
EAE, display decreased antigen-specific proliferation of
splenocytes, and fail to sustain immune cell infiltrates in
the CNS.

 

Materials and Methods

 

Mice.

 

NOD/Lt mice (10–16 wk old) were bred at the La
Trobe University Central Animal House and the Walter and
Eliza Hall Institute. NOD/Lt GM-CSF

 

�

 

/

 

�

 

 mice (10–16 wk old)
and NOD/Lt wild-type (WT) littermates were bred at the
Walter and Eliza Hall Institute. All mice were maintained in the
La Trobe University Central Animal House. All experiments
were conducted in accordance with the Australian code of prac-
tice for the care and use of animals for scientific purposes
(NHMRC, 1997), after approval by the La Trobe University An-
imal Ethics committee.

 

Induction and Clinical Assessment of EAE.

 

A total of 150 

 

�

 

g of
the encephalitogenic peptide MOG

 

35–55

 

 (MEVGWYRSPFSRV-
VHLYRNGK; Auspep) emulsified in CFA (Difco) supplemented
with 4 mg/ml 

 

Mycobacterium tuberculosis

 

 was injected subcutane-
ously into the flanks. Mice were then immediately injected intra-
venously with 350 ng of pertussis vaccine (List Biological Labora-
tories) and again 48 h later (4). Animals were monitored daily and
neurological impairment was quantified on an arbitrary clinical
scale: 0, no detectable impairment; 1, flaccid tail; 2, hind limb
weakness; 3, hind limb paralysis; 4, hind limb paralysis and as-
cending paralysis; and 5, moribund or deceased (7). Under rec-
ommendation of the animal ethics committee, mice were eutha-
nized after reaching a clinical score of 4.

 

Abs and Recombinant Proteins.

 

The mouse anti-MOG mAb
(clone 8-18C5) was purified from hybridoma culture supernatants
on a Protein G-Sepharose 4B Fast Flow column (Pharmacia
LKB) according to the manufacturer’s instructions. Antiserum to
MOG

 

35–55 

 

peptide (29) was raised in rabbits by procedures similar
to those described previously (30). The extracellular domain of
human MOG (amino acid residues 1–121 of the mature protein)
(31) (rMOG) containing an amino terminal six histidine tag was
produced in M15(pREP4) bacteria using the pQE9 expression
vector (QIAGEN). rMOG was purified using Ni-NTA Super-
flow (QIAGEN) under denaturing conditions (8 M urea) as per
the manufacturer’s instructions on a BioLogic LP Chromatogra-
phy System (Bio-Rad Laboratories). The eluted protein was re-
folded by dialysis against successive dilutions of urea (i.e., from
8 M down to 0.5 M urea) and finally against 10% glycerol in
phosphate buffered saline. Murine rGM-CSF was a gift from F.R.
Seiler, Behringwerke AG, Marburg, Germany. Purified anti-
murine GM-CSF mAb and the IgG

 

2a

 

 isotype control (anti-
murine 

 

�

 

-galactosidase) were from the 22E9.11 and GL117.41
hybridomas, respectively; these hybridomas were obtained from
DNAX Research Institute.

 

rGM-CSF Treatment.

 

GM-CSF

 

�

 

/

 

�

 

 and WT mice immu-
nized with MOG

 

35–55

 

 were injected intraperitoneally with 10 ng
of rGM-CSF dissolved in 0.5 ml of PBS every day beginning
from the day of MOG

 

35–55

 

 immunization until day 40. GM-
CSF

 

�

 

/

 

�

 

 and WT mice receiving no treatment served as controls
for these experiments.

 

Anti-GM-CSF Treatment.

 

Anti–GM-CSF mAb (300 ug di-
luted in 0.5 ml of PBS) was injected intraperitoneally into WT
mice on days 0, 2, 4, 6, 9, 12, 15, 18, 21, and 24 after MOG

 

35–55

 

immunization (prevention) or every 2 d from the onset of clinical
disease (clinical score of 2; see Induction and Clinical Assessment
of EAE above) until day 33 (suppression). As controls, mice re-
ceived an isotype control IgG mAb (anti-

 

�

 

gal) or PBS, using the
same injection protocols as above.

 

CNS Histology.

 

Brain and spinal cord were carefully dis-
sected and immersion fixed in 4% formaldehyde in PBS. In brief,
fixed tissues were embedded in paraffin wax and sections were
cut from various locations of the brain, cerebellum, and spinal
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cord. Sections were stained with H&E and Luxol fast blue for ev-
idence of inflammation and demyelination, respectively (32).

 

MOG-specific Ig Determination.

 

Ab activity to rMOG and
MOG

 

35–55 

 

in mouse sera was measured by ELISA, as described
previously (33). In brief, serum was collected 40 d after sensitiza-
tion and tested by ELISA with rMOG and MOG

 

35–55

 

 peptide-
coated plates. Ig isotype response was assessed by ELISA with
MOG

 

35–55

 

 peptide-coated plates.

 

T Cell Proliferation and Cytokine Production.

 

Spleens were
taken from mice killed 18 and 40 d after MOG

 

35–55

 

 immuniza-
tion. Cells were gently dispersed through nylon mesh into a sin-
gle cell suspension, washed, and cultured at 10

 

6

 

 cells per milliliter
in complete RPMI (RPMI 1640 containing 10% heat-inactivated
FCS [CSL Biosciences], 2 mM 

 

L

 

-glutamine, 100 U/ml of peni-
cillin, and 100 

 

�

 

g/ml of streptomycin). 200 

 

�

 

l of cell suspensions
were then added to 96-well microtiter plates either alone, with
MOG

 

35–55 

 

(20 

 

�

 

g/ml) or with Concanavalin A (Con A; 2 

 

�

 

g/ml)
and incubated for 90 h at 37

 

�

 

C with 5% CO

 

2

 

. 20 

 

�

 

l of [

 

3

 

H]thy-
midine (1 

 

�

 

Ci per well, diluted 1/20 in RPMI; Amersham Phar-
macia Biotech) was added to each well for the last 18 h. Plates
were harvested onto glass fibre filter discs and added to vials con-
taining scintillation cocktail. Counts were read using a Wallac
1410 Liquid Scintillation Counter. Presented values are the mean
of three wells. For cytokine assays, 2 ml of cells (10

 

6

 

 cells per mil-
liliter) from spleens isolated 18 d after immunization were added
to 24-well plates either alone or with MOG

 

35–55

 

 (10 

 

�

 

g/ml) or
ConA (5

 

 �

 

g/ml). Supernatants were collected at 72 h and Quan-
titative ELISA was performed for cytokines using paired mAbs as
recommended by the manufacturer (BD PharMingen).

 

Results

 

GM-CSF

 

�

 

/

 

�

 

 Mice Are Resistant to Induction of EAE.

 

To determine if endogenous GM-CSF was required for the
initiation and/or progression of EAE, GM-CSF

 

�

 

/

 

�

 

 mice
and WT littermate controls were immunized with the en-

cephalitogenic peptide MOG

 

35–55

 

 and monitored for the
development of clinical disease. As expected, 21/21 WT
mice (on a susceptible NOD/Lt background) developed a
typical relapsing remitting disease. In contrast, 20/21 GM-
CSF

 

�

 

/

 

�

 

 mice failed to develop clinical signs of disease (Fig.
1). The single mouse that displayed clinical symptoms did
not progress past a clinical score of 1.

 

rGM-CSF Treatment Reinstates Susceptibility to EAE in
GM-CSF

 

�

 

/

 

�

 

 Mice and Alters the Course of Disease in WT
Mice.

 

To verify that the absence of GM-CSF was respon-
sible for the observed resistance to the MOG

 

35–55

 

-induced
EAE in GM-CSF

 

�

 

/

 

�

 

 mice, GM-CSF

 

�

 

/

 

�

 

 mice were
treated daily with rGM-CSF, starting at day 0 until day 40
after immunization with MOG

 

35–55

 

. Such treatment re-
stores susceptibility to EAE in 5/5 GM-CSF

 

�

 

/

 

�

 

 mice (Fig.
2 A). To further establish the influence of GM-CSF on the
progression of EAE, WT mice were treated with rGM-
CSF after immunization with MOG

 

35–55

 

. The treated WT
mice developed a relapsing remitting disease similar to that
of untreated animals (Fig. 2 B). However, they had acceler-
ated onset and exacerbation of clinical disease with more
frequent and severe relapses.

Figure 1. GM-CSF regulates the onset and progression of clinical
EAE provoked by MOG35–55 peptide. Mice were immunized with
MOG35–55 peptide emulsified in CFA and monitored daily for the devel-
opment of clinical disease. Mean clinical disease score in GM-CSF�/�

and WT mice (n = 8 for each group). Note this is a representative of
three independent experiments; in total 20/21 GM-CSF�/� mice failed
to develop any clinical symptoms. The single mouse that developed
symptoms did not progress past a clinical score of 1. In contrast all WT
mice developed clinical symptoms.

Figure 2. Mean clinical disease score in (A) GM-CSF�/� and (B) WT
mice treated with rGM-CSF (n � 5 for each group). rGM-CSF (10 ng/
mouse) was injected subcutaneously every day, starting at day 0 until day
40 after immunization with MOG35–55 peptide.
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GM-CSF

 

�

 

/

 

�

 

 Mice Fail to Sustain Inflammation in the
CNS.

 

The influence of GM-CSF on the formation of
CNS inflammatory lesions was examined by histological
studies of fixed tissues using haematoxylin eosin staining of
cells within the CNS (Fig. 3). At day 18, a time at which
the disease in WT mice peaked, there were numerous in-
flammatory lesions in both WT and GM-CSF

 

�

 

/

 

�

 

 mice.
However, whilst lesions in WT mice showed typical lym-
phocytic cuffing around blood vessels with some cellular
infiltration into the CNS parenchyma (Fig. 3 A), lesions in
GM-CSF

 

�

 

/

 

� 

 

mice were, on average, much smaller and ex-
hibited much less diffusion of cells into the CNS paren-
chyma (Fig. 3 B).

At day 40, there was little alteration in the number of le-
sions within the CNS of WT mice (Fig. 3 C); however,
there was an increase in cellular infiltration into the paren-
chyma compared with that observed at day 18. Strikingly,
the CNS of GM-CSF

 

�

 

/

 

� 

 

mice at day 40 was almost free of
inflammatory lesions with only a few small lesions found in
some of the tissues analyzed (Fig. 3 D). In contrast, after
treatment with rGM-CSF for 40 d, lesions within the CNS
of GM-CSF

 

�

 

/

 

�

 

 mice were abundant (data not shown); a
finding correlating with the clinical assessment showing
that rGM-CSF treatment induces susceptibility in GM-
CSF

 

�

 

/

 

�

 

 mice (Fig. 2 A). After treatment with rGM-CSF
for 40 d, lesions were more numerous compared with un-
treated WT mice (data not shown). Lesions exhibited the
normal diffuse appearance, with cells moving from the
blood vessel into the perivascular space and even further
into the CNS parenchyma (data not shown).

 

The MOG-specific T Cell Response Is Decreased in GM-
CSF

 

�

 

/

 

�

 

 Mice.

 

To elucidate the mechanism underlying
the failure of GM-CSF

 

�

 

/

 

�

 

 mice to develop EAE, the im-

mune response against MOG was investigated. Given that
EAE is characterized by the generation of autoreactive T
cells, which are thought to infiltrate the CNS parenchyma
and initiate the local inflammatory response, the functional
activity of autoreactive T cells was assessed. Proliferation
assays were performed to quantitate the MOG-specific
proliferative response of T cells generated by immuniza-
tion with MOG

 

35–55

 

. At 18 d after immunization with
MOG

 

35–55

 

, splenocytes from WT mice proliferated
strongly to MOG

 

35–55

 

 with stimulation indices approxi-
mately three times higher than cells from GM-CSF

 

�

 

/

 

�

 

mice (Fig. 4 A). At day 40 the proliferative response in
GM-CSF

 

�

 

/

 

�

 

 was still markedly less than WT mice (Fig. 4
C). In contrast, in the experiment where mice were treated
with rGM-CSF, the proliferative response was restored in
the GM-CSF

 

�

 

/

 

� mice and enhanced in WT mice (Fig. 4
C). To address the question as to whether the decreased
proliferative response was antigen specific or due to a gen-
eralized defect in the activation or function of T cells, sple-
nocytes were stimulated with the polyclonal activator Con
A. Splenocytes from GM-CSF�/�, WT, and rGM-CSF-
treated mice showed no difference in proliferation to Con
A (Fig. 4 B and D).

MOG35–55-specific T Cells in GM-CSF�/� Mice Exhibit
Decreased Th1 Cytokine Expression. We next ascertained if
the phenotype of MOG35–55-specific T cells was altered in
GM-CSF�/� mice. Accordingly, cytokine profiles of cul-
tured splenocytes were determined (Fig. 5). As expected,
no GM-CSF was detected in supernatants of cultured sple-
nocytes from GM-CSF�/� mice (Fig. 5 A). The level of
IFN-� and IL-6, proinflammatory cytokines known to be
involved in the pathogenesis of EAE, were decreased in
GM-CSF�/� mice compared with WT mice (Fig. 5 C and

Figure 3. Brain histopathology of par-
affin sections from mice immunized with
MOG35–55. H&E staining showing typical
inflammatory cuffing around blood vessels
with cellular infiltration into the CNS pa-
renchyma of WT mice killed (A) 18 and
(C) 40 d after immunization (original
magnification: 	10). H&E staining show-
ing small focal inflammatory lesions in
GM-CSF�/� mice killed 18 d after im-
munization (B) and no inflammation in
GM-CSF�/� mice killed 40 d after im-
munization (D) (original magnification:
	10). 26–30 sagital sections per mouse
(n � 6 for each group) were examined
without knowledge of the injection re-
gime by two independent investigators.
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D, respectively). IL-2 levels were similar in both groups
(Fig. 5 D). TNF-
, IL-4, and IL-10 were undetectable in
culture supernatants (data not shown).

The AutoAb Response in EAE Is not Dependent on GM-
CSF. Although considerable attention has been directed
to the role of cell-mediated immunity to myelin antigens in
MS and EAE, it should be emphasized that primary demy-
elination could also be mediated by autoAbs (34, 35).
Therefore, sera were collected from mice at day 40 after
immunization with MOG35–55 and analyzed for autoAbs
against MOG. GM-CSF�/� mice, WT mice, and mice
treated with rGM-CSF all secreted similar levels of total
MOG-specific IgG (Fig. 6 A and B) and there was no dif-
ference in expression of different Ig isotypes (Fig. 6 C).

Anti–GM-CSF Is a Potent Therapeutic Agent for EAE.
As an alternative means of studying the actions of GM-
CSF in EAE, GM-CSF activity was blocked in WT mice
by administration of anti–GM-CSF. When administered
from the time of antigenic challenge, anti–GM-CSF pre-
vented the onset of clinical disease for the period of treat-
ment and for 10 d after treatment was ceased (Fig. 7 A).

After this time and with no further treatment, all mice de-
veloped severe neurological deficits similar to control mice
(data not shown). Mice receiving PBS developed the typi-
cal relapsing remitting disease and were killed at the peak
of disease to conform with ethical requirements, denoted
by a cross in Fig. 7 A. Mice administered with an isotype
control Ab exhibited a slightly less severe disease (Fig. 7
A), which is consistent with reports that nonspecific Ig
treatment is therapeutic in EAE and MS (36). Histochemi-
cal studies showed that mice treated with anti–GM-CSF
had a reduction in the total number and severity of lesions
(data not shown).

To examine the potential therapeutic action of anti-
GM-CSF, mice were treated after the onset of clinical dis-
ease (clinical score at least 2). Mice administered with anti-
GM-CSF after disease onset completely recovered within
20 d of treatment (Fig. 7 B). Conversely, mice receiving
PBS or isotype control Ab exhibited the typical relapsing
remitting disease (Fig. 7 B). Again, the isotype control Ab
elicited a slight suppression of disease. Histochemical stud-
ies showed that lesions within the CNS of mice treated
with anti–GM-CSF were small and sparse, compared with

Figure 4. Antigen-specific proliferative responses by spleen cells from
mice immunized with MOG35–55 peptide. Cells from GM-CSF�/� and
WT mice (n = 6 for both groups) were isolated 18 d after disease induc-
tion and stimulated in vitro with (A) MOG35–55 peptide and (B) Con A.
At day 40 cells were taken from GM-CSF�/� and WT mice, and GM-
CSF�/� and WT mice treated with rGM-CSF (n � 5 for each group) and
stimulated in vitro with (C) MOG35–55 peptide and (D) Con A. Each bar
represents the mean stimulation indices � SEM.

Figure 5. Production of cytokines, GM-CSF (A), IL-2 (B), IFN-� (C),
and IL-6 (D) by spleen cells from GM-CSF�/� and WT mice immunized
with MOG35–55 peptide. Cytokine concentrations were measured from
supernatants after 72 h of in vitro culture with MOG35–55 peptide. Each
bar represents the mean concentration � SEM (n = 6 for both groups),
each tested in triplicate.
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PBS treated mice, which mostly exhibited large diffuse le-
sions. Mice treated with the isotype control Ab also had
fewer lesions, compared with the PBS treated controls
(data not shown).

Discussion
EAE is a CD4� T cell–mediated inflammatory demyeli-

nating disease of the CNS that serves as an experimental
model of the human disease, MS. It can be induced by a
number of myelin antigens, such as myelin basic protein,
proteolipid protein, and MOG. While MOG is a quantita-
tively minor protein of the CNS myelin with an as yet un-
known function, this molecule and its immunodominant
peptide, MOG35–55, are able to induce a paralytic MS-like
disease with extensive CNS inflammation and demyelina-
tion in several strains of mice. C57BL/6 mice exhibit a
chronic nonremitting disease while NOD/Lt mice develop
a severe relapsing-remitting disease (4, 7). Here, we exam-
ined whether GM-CSF, a pleiotropic cytokine considered
to be a critical mediator in the development of chronic in-
flammation, influenced the development and progression
of EAE in NOD/Lt mice.

Our study shows that GM-CSF�/� mice, on a susceptible
NOD/Lt background, fail to develop clinical signs of
MOG35–55-induced EAE. To address the question of
whether resistance was associated with alterations in the
MOG-specific immune response, we analyzed the Th1/
Th2 phenotype and proliferative response of MOG-specific
T cells. T cells from GM-CSF�/� mice proliferated less ro-
bustly to MOG and secreted lower levels of IFN-� and IL-
6, compared with WT controls. This suggests that resistance
was associated with a decreased MOG-specific Th1 re-
sponse. It is unclear whether GM-CSF is involved in the ac-
tivation and expansion of T cells in the periphery, or if it is
involved in regulating survival and migration of encephali-
togenic T cells into the CNS and/or their reactivation
within the CNS. This reduced T cell response is not medi-
ated by a direct effect on T cells because T cells lack recep-
tors for GM-CSF (37). Rather, there is considerable evi-
dence that GM-CSF may play a crucial role in CD4� T
cell–mediated immune responses by activating DCs (28, 38).

Figure 6. MOG-specific Ab response in mice immunized with
MOG35–55 peptide. Serum was collected 40 d after sensitization and
tested by ELISA with (A) rMOG and (B) MOG35–55 peptide-coated
plates. (C), Ig isotype response was assessed by ELISA (33) with
MOG35–55 peptide-coated plates. Each bar represents the mean specific
absorbance (corrected against BSA coated plates) � SEM (n = 5 for each
group), each tested in triplicate at 1:100 dilutions. For the GM-CSF�/�

mice and WT controls this study was repeated (n = 8) with no differ-
ence in results (data not shown).

Figure 7. Influence of anti–GM-CSF mAb on the clinical course of
MOG35–55-induced EAE in WT mice. (A) Mean clinical score of
MOG35–55-induced EAE in WT mice treated by intraperitoneal injection
with PBS (n = 4), anti–GM-CSF mAb (n � 8), or isotype control IgG
(n � 8, anti-�gal) from time of sensitization with MOG35–55 peptide until
day 24. (B) Mean clinical score of MOG35–55-induced EAE in WT mice
treated by intraperitoneal injection with PBS, anti–GM-CSF mAb, or
isotype control IgG (n � 6 for each group) from first signs of clinical dis-
ease (score � 2) until day 33.
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T cell activation involves the presentation of antigen by
DCs to naive antigen-specific T cells in the periphery.
Once activated, T cells are able to provide antigen-specific
B cells with costimulation, required for clonal expansion,
differentiation, Ab production, and isotype switching (39).
Hence, in view of the fact that Ab production persists in
GM-CSF�/� mice, with no difference between total IgG
or Ig isotype response in comparison with WT controls,
we can assume that MOG-reactive T cells in GM-CSF�/�

mice can be functionally activated (39). Furthermore, T
cells from GM-CSF�/� mice proliferated vigorously in re-
sponse to the polyclonal activator, ConA, indicating that
there was no generalized defect in T cell receptor signaling
events and the proliferative potential of the T cells was in-
tact. Thus, it is unlikely that inefficient activation of T cells
by dendritic APCs in the periphery can account alone for
the observed resistance to EAE in GM-CSF�/� mice. Al-
ternatively, GM-CSF may play a role in the effector phase
of the disease, particularly within the CNS environment. In
the CIA model, a similar intact humoral response to type II
collagen was found in GM-CSF�/� mice in spite of a dra-
matic suppression in arthritis (20).

Histological analysis of CNS tissue from GM-CSF�/�

mice revealed development of early lesions at day 18
within the CNS of GM-CSF�/� mice, confirming that
there was activation of the inflammatory cascade. How-
ever, despite the presence of early lesions within the CNS
of GM-CSF�/� mice, where some perivascular congestion
of cells around blood vessels was observed, strikingly, in-
flammation was almost completely absent at day 40. In
contrast, numerous lesions in WT mice were present at
both time points (days 18 and 40) and appeared more dif-
fuse with cellular infiltration further into the CNS paren-
chyma. Also, when treated with rGM-CSF, numerous le-
sions were found within the CNS of GM-CSF�/� mice
and even more in rGM-CSF–treated WT mice. On the
other hand, GM-CSF inhibition studies using anti–GM-
CSF mAb showed that GM-CSF blockade not only pre-
vented the onset of clinical disease when administered from
the time of antigenic challenge, but also ameliorated disease
when administered after the onset of clinical symptoms.
This was associated with a marked reduction in cellular in-
filtration within the CNS of anti–GM-CSF–treated mice.
Taken together, these findings suggest that the normal for-
mation, maintenance, and expansion of inflammatory le-
sions within the CNS in the effector phase of EAE are de-
pendent on GM-CSF.

Despite initial reports of normal hematopoiesis in GM-
CSF–deficient mice, there is increasing evidence for an es-
sential hematopoietic role for GM-CSF after antigenic
challenge (21, 26). Thus, the inability to maintain inflam-
mation in the CNS could reflect a failure to maintain sup-
ply of macrophages and PMNs in the site of inflammation
and/or insufficient activation or local proliferation of in-
flammatory cells within the CNS (40). A number of studies
have shown that monocytes, macrophages, and PMNs play
a critical role in the effector phase of EAE in mice (41–44).
Lack of antigen presentation by such cells within the CNS

could in part explain the diminished MOG-reactive T cell
response observed. Besides macrophages and PMNs, resi-
dent microglia are also believed to play an important role in
antigen presentation and stimulation of T cells within the
CNS (45).

There is now a large body of evidence supporting a role
for GM-CSF in the activation of macrophages, PMNs, and
microglia (46). Indeed, GM-CSF has been shown to in-
duce MHC class II and B7 expression (11, 47) as well as
enhance the phagocytic and APC function of both mac-
rophages and resident microglia (12, 13). In EAE, activated
macrophages and/or microglia in the CNS show upregu-
lated expression of MHC class II and B7 molecules (42, 48,
49). A recent study has also implicated GM-CSF in the dif-
ferentiation of brain DCs from local CNS progenitors (10).
Due to their strong Th1-inducing capacity and their long-
lasting presence within the CNS, these brain DCs may play
a key role in the exacerbation or maintenance of immune-
mediated CNS diseases such as EAE.

Another explanation for the collapse in the inflamma-
tory cascade in GM-CSF�/� mice could be an imbalance
in proteinases, causing a failure in the digestion of the
extracellular matrix in the CNS, and/or inefficient
generation of chemoattractant gradients (50–52). In this
context, it is noteworthy that recent studies using
transformed cells engineered to express GM-CSF have
demonstrated a role for GM-CSF in regulating the syn-
thesis of MIP-1
 and MCP-1 in murine PMN and mac-
rophages (53). Such chemokines were shown to be
largely responsible for accumulation and infiltration of
immune cells into the CNS in EAE (54, 55). Whether
GM-CSF influences the inflammatory response via any
one, or a combination of the aforementioned pathways
in EAE, is yet to be elucidated.

Narrowing down the precise mechanism(s) involved in
the proinflammatory effect of GM-CSF in the pathogene-
sis of disease is currently under investigation. It is likely
that GM-CSF has a central role in regulating the complex
network of cytokines and chemokines involved in the ac-
tivation, recruitment, and local proliferation of DCs, mac-
rophages, PMNs, and microglia both during induction in
the periphery and within the CNS during the effector
phase of disease. Collectively, the work presented here
clearly demonstrates a critical role for GM-CSF in the
maintenance of chronic inflammation in the experimental
MS-like disease in NOD/Lt mice and opens new avenues
for the development of therapeutic strategies for the treat-
ment of MS.
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