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Abstract

Many of the activating receptors on natural killer (NK) cells are multisubunit complexes com-
posed of ligand-binding receptors that are noncovalently associated with membrane-bound sig-
naling adaptor proteins, including CD3(, FceRIy, DAP12, and DAP10. Because the DAP10
and DAP12 genes are closely linked, expressed in NK cells, and have remarkably similar trans-
membrane segments, it was of interest to determine the specificity of their interactions with
ligand-binding receptors and to examine their signaling properties. Despite their similarities,
DAP10, DAP12, FceRIy, and CD3{ form specific receptor complexes with their ligand-bind-
ing partners in NK cells and transfectants. The transmembrane regions of DAP10 and DAP12
are sufficient to confer specific association with their partners. Although cross-linking of either
DAP10- or DAP12-associated receptors has been shown to be sufficient to trigger NK cell-
mediated cytotoxicity against Fc receptor—bearing cells, substantial synergy was observed in the
induction of cytokine production when both receptors were engaged. Activation of the Syk/
ZAP70 tyrosine kinases by the immunoreceptor tyrosine-based activation motif-containing
DAP12 adaptor and of the phosphatidylinositol 3-kinase pathway by the YxNM-containing

DAP10 adaptor may play an important role in the stimulation of NK cells and T cells.
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Introduction

NK cells are a subset of lymphocytes that function as a crit-
ical component of innate immunity against intracellular and
parasitic pathogens, and possibly tumors. Their eftector
functions are controlled by the opposing activity of activat-
ing and inhibitory cell surface receptors (for reviews, see
references 1 and 2). Unlike T and B lymphocytes, in which
the key activating receptors such as the T and B cell anti-
gen receptors have been well characterized, the major stim-
ulatory counterparts in NK cells are still being defined.
Several genes in the killer cell Ig-like receptor (KIR),!
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Ly49, and NKG2 families encode receptors that have short
cytoplasmic domains lacking intrinsic signaling motifs (for
reviews, see references 1 and 2). These receptors activate,
rather than inhibit, NK cell cytotoxicity and cytokine pro-
duction. However, similar to the situation with the TCR
that signals via its association with the CD3 membrane
adaptor molecules, these activating NK cell receptors non-
covalently associate with DAP12, a CD3-like membrane
adaptor containing an immunoreceptor tyrosine-based acti-
vation motif (ITAM) in its cytoplasmic domain (3-7).
DAP12, a single gene on human chromosome 19q13.1 and
mouse chromosome 7, encodes type I membrane proteins
expressed as disulfide-bonded homodimers on NK cells,
myeloid cells, and a subset of T cells (5). In NK cells,
DAP12 associates with the several receptors for MHC class
I, including KIR2DS2, Ly49D, Ly49H, and CD94/
NKG2C (3-7).

Another membrane adaptor protein, DAP10, is encoded
by a gene immediately adjacent to DAP12 in the genome,
but in opposite transcriptional orientation (8). Although
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DAP10 has only 20% overall amino acid homology with
DAP12, it is expressed as a disulfide-bonded homodimer
on the surface of NK cells, myeloid cells, and a subset of T
cells. Unlike DAP12, DAP10 does not have an ITAM in
its cytoplasmic region. The cytoplasmic domain of human
and mouse DAP10 has a YxxM motif, a potential src ho-
mology 2 (SH2) domain—binding site for the p85 regula-
tory subunit of the phosphatidylinositol (PI)3-kinase (9).
DAP10 is noncovalently associated with NKG2D, a recep-
tor on NK cells, TCR~y/8" T cells, and CD8* T cells that
recognizes the nonclassical MHC class I molecules MICA
and MICB (8, 10).

Many of the activating immune receptors (e.g., TCR/
CD3 on T cells, surface Ig on B cells, and FcR on NK cells
and myeloid cells) are comprised of separate ligand-binding
and signal-transducing subunits. An advantage of building
receptors by the assembly of multiple subunits is the ability
to mix and match those subunits to generate receptor di-
versity. Assuming that individual subunits have characteris-
tic functional capabilities, such pairing allows a cell to con-
struct different receptor complexes with different ligand
specificity and/or signaling potential. In this report, we
have examined the receptor specificity of the DAP10 and
DAP12 adaptor proteins and the functional interplay be-
tween these receptor complexes.

Materials and Methods

¢(DNAs, Cells, and Transfectants. ¢DNAs used were human
KIR2DS2 (11), NKG2C (12), Flag-DAP10 (8), and Flag-DAP12
(5), which were subcloned into either pMX-neo, pMX-puro, or
pMX-pie (containing a puromycin resistance gene, an internal ri-
bosomal entry site [IRES] element, and the enhanced green fluo-
rescent protein [GFP] gene retroviral vectors [13]). A cDNA
containing the human CDS8 leader segment, followed by the Flag
epitope (DYKDDDDK) and joined to the extracellular domain
of human FceRIy or CD3{ was subcloned into the pMX-puro
retroviral vector. A ¢cDNA containing the human CD8 leader
segment, followed by the Myc epitope (EQKLISEEDL) and
joined to the extracellular domain of human DAP10, was sub-
cloned into the pMX-puro-IRES-GFP retroviral vector. The
transmembrane (TM) mutants of Flag-DAP10 (EC10-TM12-
CY10) and Flag-DAP12 (EC12-TM10-CY12) were generated
by standard PCR mutagenesis, in which the entire TM regions of
DAP10 and DAP12 were swapped. The point mutations in the
TM region of DAP10 were generated by using PCR. All muta-
tions were confirmed by sequencing the ¢cDNA. Retroviruses
were generated by using the Phoenix packaging cell lines (gifts
from G. Nolan, Stanford University, Palo Alto, CA [14]). Ba/F3
cells (a gift from T. Kitamura, University of Tokyo, Tokyo, Ja-
pan) and NKL cells (provided by M. Robertson, University of
Indianapolis, Indianapolis, IN [15]) were infected, drug selected,
and the resulting transfectants were isolated by flow cytometry
using either GFP or specific Abs. Short-term polyclonal NK cell
lines (uniformly CD3~CD56") were established from the periph-
eral blood of healthy adult donors and cultured as described by
Yssel et al. (16).

Abs and Flow Cytometry. mAbs used were isotype-matched
control mouse IgG mAb (Becton Dickinson), anti-KIR2D mAb
DX27 (17), anti-CD16 mAb Leu 11a (Becton Dickinson), anti-

NKG2D mAb 1D11 (10), anti-CD94 mAb DX22 (17), anti-
CD94/NKG2A/C mAb DX42, anti-CD3 mAb Leu 4 (Becton
Dickinson), anti-Flag mAb M2 (Sigma-Aldrich), anti-myc mAb
9E10 (Sigma-Aldrich), and anti-human DAP12 mAb DX37.
DX37 is an IgGl mAb that was generated by immunizing
BALB/c mice with a glutathione S-transferase fusion protein
containing the entire cytoplasmic domain of human DAP12.
DX42 is an IgG2b mAb that was generated by immunizing
BALB/c¢ mice with the mouse pro-B cell line Ba/F3 transfected
with human CD94/NKG2C-DAP12. DX42 reacts with het-
erodimers of CD94 and NKG2A or CD94 and NKG2C, but
does not bind to the isolated CD94, NKG2A, or NKG2C sub-
units. Affinity-purified rabbit anti-DAP10 and anti-DAP12 antis-
era were described previously (5, 8). J. Bolen (DNAX Corp.,
Palo Alto, CA) provided rabbit anti-Syk antiserum. Antiphos-
photyrosine mAb 4G10 was purchased from Upstate Biotechnol-
ogy. FITC- and PE-conjugated goat anti-mouse Ig were pur-
chased from Caltag. Immunofluorescence and flow cytometry
were performed as described (18).

Sutface  Iodination,  Biotinylation, —and  Immunoprecipitation.
Transfected Ba/F3 cells, polyclonal NK cell lines, and NKL cells
were labeled with either '»I (Amersham Pharmacia Biotech) or
sulfo-N-hydroxy-succinimide (NHS)-biotin (Pierce Chemical
Co.) and solubilized in digitonin lysis buffer (pH 7.8, 1% digito-
nin, 0.12% Triton X-100, 150 mM NaCl, 20 mM triethanola-
mine, 0.01% NalNj, and protease inhibitors [19]). Cell lysates
were incubated on ice for 2 h with Pansorbin (Calbiochem)
coated with rabbit anti-mouse Ig (Sigma-Aldrich) and the indi-
cated mAbs. The resulting immune complexes were washed and
analyzed by SDS-PAGE, and then either visualized by using a
Phosphorlmager (Molecular Dynamics) for '?5I-labeled proteins
or transferred to Immobilon membrane (Millipore), blocked,
probed with horseradish peroxidase (HRP)-conjugated streptavi-
din (Amersham Pharmacia Biotech), and visualized by using a
chemiluminescent substrate (Pierce Chemical Co.).

Cell Stimulation and Antiphosphotyrosine Blot.  Transfected Ba/
F3 cells were incubated with either an isotype-matched control
mAb, anti-KIR2DS2 mAb DX27, or anti-NKG2D mAb 1D11
on ice, washed, and then cross-linked with F(ab'), goat anti—
mouse IgG (Jackson ImmunoResearch Laboratories) for 3 min at
37°C. Cells were lysed in buffer containing 1% NP-40 and pro-
tease inhibitors (5). Syk proteins were immunoprecipitated with
rabbit anti-Sky antiserum and analyzed by SDS-PAGE and West-
ern blot by using HRP-conjugated antiphosphotyrosine mAb
(4G10; Upstate Biotechnology) and a chemiluminescent substrate
(Pierce Chemical Co.).

Cytokine Secretion.  96-well flat-bottomed plates were coated
(overnight at 10 pg/ml in PBS) with a goat anti-mouse Ig
F(ab"),, Fc portion—specific Ab (Jackson ImmunoResearch Labo-
ratories). The wells were blocked with sterile PBS containing
0.5% BSA and incubated with various mAbs at the indicated con-
centrations. Wells were washed to remove excess Abs, and 10°
cells were incubated for 20 h in 200 pl of IMDM (GIBCO BRL)
supplemented with 200 U/ml recombinant human IL-2, 10%
FCS, penicillin, streptomycin, and L-glutamine. Supernatants
were harvested from triplicate wells, and the levels of secreted
IFN-vy and GM-CSF were determined by ELISA, as described
previously (20).

Cytotoxicity Assays. NK cells were assayed in an Ab-redi-
rected cytotoxicity against >!Cr-labeled FcR* mouse P815 target
cells in the presence or absence of anti-human CD56 mAb Leu
19 (used as a negative control) or anti-human NKG2D mAb
1D11, as described (10).
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Results and Discussion

Specificity of the DAP10, DAP12, FeeRIy, and CD3{ Adap-
tor Proteins.  Many NK receptors, including KIR2DS,
CD94/NKG2C, Ly49D, Ly49H, NKG2D, NKR-P1,
NKp44, NKp46, and NKp30, are multisubunit receptor
complexes that convey signals via the membrane adaptors
DAP10, DAP12, FceRIy, or CD3{ (5-8, 21-24). All of
these adaptors have an aspartic acid residue in their hydro-
phobic TM domains that is required for interaction with an
oppositely charged, basic residue in their ligand-binding re-
ceptors. Because the TM regions of these adaptors are quite
similar, studies were undertaken to determine whether
these proteins are specific or promiscuous in their interac-
tions with the ligand-binding receptors. A mouse pro-B
cell line, Ba/F3, was infected with ecotropic retroviruses
encoding human DAP10, DAP12, FceRIy, or CD3{ (all
contain Flag epitope tags on the NH, terminus to permit
detection on the cell surface). Consistent with prior results,
transfection of these signaling adaptors alone into Ba/F3
cells did not permit efficient cell surface expression (Fig. 1),
although Western blot analysis indicated abundant pro-
teins in the cytoplasm (data not shown). When these cells
were infected with retroviruses encoding human CD16,
NKG2D, or CD9%4 and NKG2C, stable receptor com-
plexes were present on the cell surface only when the phys-
iologically relevant adaptor was coexpressed, as determined
by detection of the Flag epitope of the adaptor protein on
the plasma membrane (Fig. 1) and by coimmunoprecipi-
tation of the adaptor and ligand-binding receptor (not
shown). NKG2D paired with DAP10, but not with
DAP12, FceRly, or CD3{. CD16 paired with either
FceRIy or CD3{, but not DAP10 or DAP12, and the
CD94/NKG2C heterodimer associated only with DAP12

BaF/3 Stably
Expressing: -

NKG2D CD94/NKG2C CD16

B i D84/ aCD16
i aNKG2D |} | NKG2C
Flag-DAP10 | i

Flag-DAP12 | t A
Flag-FceRly | /] Wh
Flag-CD3 DQ\

Log Fluorescence Intensity

Figure 1. Receptor-pairing specificity of DAP10, DAP12, FceRly,
and CD3({. BaF/3 cells were first transfected with either a control cDNA,
human NKG2D, CD9%4 and NKG2C, or CD16, and stable transfectants
were generated by maintaining the cells in appropriate drug selection.
The Flag epitope-tagged DAP10, DAP12, FceRIy, or CD3{ cDNA
were then transfected into the indicated cell lines, and subsequent double
or triple transfectants were selected by drug selection. Cells were analyzed
by flow cytometry using the indicated Abs, and data are presented as his-
tograms. Western blot analysis showed that the Flag-tagged adaptors were
expressed comparably in all transfectants (data not shown). clg, control Ig.
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(Fig. 1). These data demonstrate the exquisite specificity in
the adaptor—receptor interaction and indicate that the con-
served aspartic acid residues in the TM domains of these
adaptor proteins do not permit promiscuous pairing.

The oppositely charged residues in the TMs of the adap-
tor proteins (D) and receptors (R or K) may form salt
bridges in the lipid bilayer, thus stabilizing these multisub-
unit receptor complexes in the plasma membrane. How-
ever, a salt bridge may not be requisite because both CD16
and its adaptor subunit FceRIy or CD3{ possess an aspartic
acid residue in their TM regions. Thus, interactions that
are more complex dictate the nature and/or the orientation
of the interaction sites within the TM segments of the re-
ceptors and adaptors. In addition, the relative position of
the positively charged residues within the TM domains is
different between DAP10 and NKG2D versus FceRIy or
CD3({ and its partner CD16. This different spacing may
potentially contribute to the specific conformation for pair-
ing with the corresponding subunit.

The TM Domains of DAP10 and DAP12 Confer Receptor
Specificity.  DAP10 and DAP12 both contain a pair of
membrane-proximal extracellular cysteine residues that are
likely required for the generation of disulfide-bonded
dimers. Moreover, DAP10 and DAP12 have very homolo-
gous TM domains. The boundaries of these TM regions,
the aspartic acid residues, and the relative positions of these
charged residues within the TM regions are identical in
DAP10 and DAP12 (Fig. 2 A). This raised the question of
whether the TM domains of DAP10 and DAP12 confer
specificity for their association with the ligand-binding re-
ceptor subunits. Preliminary studies with truncation mu-
tants removing the entire cytoplasmic domains of DAP10
and DAP12 revealed that these regions were not required
for the association with their ligand-binding partners (data
not shown). Therefore, we generated chimeric molecules
in which the entire TM domains were swapped between
DAP10 and DAP12 (Fig. 2 A) and examined their ability
to stabilize the surface expression of NKG2D and CD9%4/
NKG2C. DAP10, DAP12, and the chimeric adaptors all
contained a Flag epitope tag on the NH, terminus for visu-
alization by flow cytometry and by Western blot analysis.
As shown in Fig. 2 B, only the wild-type (wt) DAP10 and
the DAP12 chimera with the DAP10 TM region (EC12-
TM10-CY12) were capable of stabilizing the expression of
NKG2D on the cell surface. Cell surface 1odination and
immunoprecipitation with anti-Flag mAb further demon-
strated that only coexpression of NKG2D with either the
wt DAP10 or EC12-TM10-CY12 protein resulted in sta-
ble surface expression of the receptor complex (Fig. 2 C).
Consistent with this conclusion, immunoprecipitation with
anti-NKG2D mAb failed to reveal any !?I-labeled
NKG2D glycoproteins when this molecule was cotrans-
fected with DAP12 or the chimeric EC10-TM12-CY 10
adaptor protein (data not shown). The DAP10 chimera
with the DAP12 TM domain, although unable to form a
receptor complex with NKG2D, was able to rescue the
surface expression of CD94/NKG2C (Fig. 2 D). Similar
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drug selection. Cells were stained with anti-NKG2D mAb and analyzed by flow cytometry. Similar staining profiles were observed by using anti-Flag
mAb M2 (data not shown). clg, control Ig. (C) The double transfectants were surface labeled with '?I, lysed, and immunoprecipitated with either a con-
trol mAb or anti-Flag mAb M2. The top part of the gel was analyzed by autoradiography; the lower part was transferred to an Immobilon membrane and
analyzed by Western blot using anti-Flag mAb M2. (D) The DAP12 TM confers specificity to pair with the DAP12 partner, CD94/NKG2C. A Ba/F3
transfectant expressing human CD94 and NKG2C was transfected with either a control vector, wt DAP12, wt DAP10, or EC10-TM12-CY10. Cells
were stained with an mAD reactive with the heterodimers of CD94/NKG2A or CD94/NKG2C, and subsequently analyzed by flow cytometry.

results were also obtained when the chimeric EC10-
TM12-CY10 adaptor protein was coexpressed with an-
other DAP12-associated receptor, KIR2DS2 (data not
shown). Taken together, these data demonstrate that, de-
spite their striking similarity, the TM regions of DAP10
and DAP12, at least partially, confer specificity for their as-
sociation with their ligand-binding partner subunits.

So which TM amino acids determine the specificity?
TM regions are most likely, on first principles, to exist as
a-helices. Assuming that the interaction between the op-
positely charged residues is crucial for a complex forma-
tion, one hypothesis is that residues on the face of the helix
where the charged residues orient might be important in
maintaining close contact between the adaptor and recep-
tor, thus providing specific pairwise interactions in the lipid
bilayer. As shown in Fig. 2 A, an a-helical model indicates
that residues 1, 5, 10, 12, 13, 23, and 24 in these TM re-
gions may lie on the same face as the aspartic acid residue
and differ between DAP10 and DAP12. In particular, the
amino acids at positions 1, 5, 10, 13, and 23 differed in

DAP10 and DAP12, but are conserved in mice and hu-
mans. The amino acid at each of these five positions in
DAP10 was changed by site-directed mutation to the cor-
responding amino acid present in DAP12, and these mu-
tant molecules were tested for association with NKG2D or
KIR2DS2. Remarkably, no single point mutation alone
was able to confer partner chain specificity, suggesting that
multiple contact points are required for interaction. It
should be noted that stabilization of surface expression of
NKG2D by the chimeric EC 12-TM10-CY 12 adaptor was
less efficient than that conferred by the wt DAP10 (Fig. 2,
B and C). Thus, although not required, the extracellular
regions may cooperate with the TM domains to increase
the specificity of the pairing.

DAP10 and DAP12 Form Distinct Receptor Complexes.
Reminiscent of the CD3 chains, DAP10 and DAP12 are
also genetically linked and structurally homologous, thus
raising the possibility that DAP10 and DAP12 may form a
larger receptor complex in which they mediate different
signaling functions. To address this possibility, Ba/F3 cells
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stably transduced with KIR2DS2 and a Flag epitope—
tagged human DAP12 were infected with a retrovirus en-
coding Myc epitope—tagged human DAP10. As shown in
Fig. 3 A, only minimal surface expression of Myc-DAP10
was detected in the triple transfectant, suggesting the ab-
sence of a trimolecular complex. Moreover, the expression
of Myc-DAP10 did not alter the surface expression of Flag-
DAP12 or KIR2DS2 (data not shown), again underscoring
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oV form distinct receptor complexes
in Ba/F3 transfectants. (A) A Ba/
F3 transfectant expressing Flag-
oSyk Blot: ~ DAPI12 and KIR2DS2  was

LR - {fg;;) transfected with Myc epitope—

tagged DAP10 in an IRES-

enhanced GFP—containing vec-
tor. Cells were sorted for GFP positive, maintained in appropriate drug
selection, stained with the indicated mAbs, and analyzed by flow cytome-
try (left). clg, control Ig. The triple transfectant was transfected with hu-
man NKG2D and sorted for NKG2D-positive cells. The KIR2DS2/
NKG2D/Myc-DAP10/Flag-DAP12 transfectant was stained with the in-
dicated mAb and analyzed by flow cytometry (right). (B) The KIR2DS2/
NKG2D/Myc-DAP10/Flag-DAP12 Ba/F3 transfectant was surface la-
beled with '?°I, lysed in digitonin buffer, and immunoprecipitated with
either a control Ig, anti-DAP10 antiserum, anti-DAP12 antiserum, anti-
KIR mAb DX27, or anti-NKG2D mAb 1D11. The resulting immune
complexes were resolved by SDS-PAGE and analyzed by autoradiogra-
phy. The heterogeneous migration pattern of Myc-DAP10 is likely due
to O-link glycosylation of its extracellular domain. (C) The KIR2DS2/
NKG2D/Myc-DAP10/Flag-DAP12 Ba/F3 transfectant was stimulated
with a control mAb, anti-KIR. mAb DX27, or anti-NKG2D mAb 1D11
for 3 min at 37°C. Anti-Syk Ab immune complexes were resolved by
SDS-PAGE, transferred to Immobilon membrane, probed with HRP-
conjugated antiphosphotyrosine (ap-Y) mAb 4G10, and developed by
using a chemiluminescent substrate.
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the specific interaction between DAP12 and KIR2DS2.
Consistent with prior findings, infection of these cells with
a retrovirus encoding human NKG2D led to a significant
surface expression of both Myc-DAP10 and NKG2D (Fig.
3 A). These cells were labeled by surface iodination, lysed
in digitonin detergent to preserve noncovalent interactions
between the receptor subunits, and immunoprecipitated
with Abs against the receptors or adaptor proteins. These
studies revealed that distinct receptor complexes were
formed by KIR2DS2/Flag-DAP12 and NKG2D/Myc-
DAP10 (Fig. 3 B). There was no evidence for the existence
of disulfide-bonded heterodimers between DAP10 and
DAP12. Furthermore, KIR2DS2 was not coimmunopre-
cipitated with DAP10 or NKG2D. Similarly, NKG2D was
not coimmunoprecipitated with DAP12 or KIR2DS2.

To further determine whether these complexes are phys-
ically distinct and functionally separate, the transfectants
were stimulated with a control Ab, an anti-KIR mAb, or
an anti-NKG2D mAb, and the tyrosine phosphorylation
status of the protein tyrosine kinase Syk was evaluated. As
shown in Fig. 3 C, triggering of KIR2DS2/Flag-DAP12,
but not NKG2D/Myc-DAP10, resulted in tyrosine phos-
phorylation of Syk. These results using Ba/F3 transfectants
were validated by using human polyclonal NK and T cell
lines expressing NKG2D, in which cross-linking of
NKG2D failed to phosphorylate Syk (data not shown).
Collectively, these results suggest that KIR2DS2/DAP12
and NKG2D/DAP10 form separate receptors and activate
distinct downstream signaling pathways.

DAP12 Complexes with Different Ligand-binding Recep-
tors.  DAP12 associates with several different receptors in
NK cells, monocytes, and dendritic cells. To examine
whether these DAP12-containing receptors form higher
order multisubunit complexes when present in the same
cell, we established Ba/F3 cells stably expressing either
CD94/NKG2C/Flag-DAP12 alone or both CD94/
NKG2C/Flag-DAP12 and KIR2DS2 (Fig. 4 A). As previ-
ously shown (6), CD94, NKG2C, and Flag-DAP12 form a
stable receptor complex on the cell surface (Fig. 4 A), evi-
dent by the coimmunoprecipitation of '?I-labeled CD94/
NKG2C and Flag-DAP12 (Fig. 4 B). Transtection with
KIR2DS2 resulted in efficient surface expression of
KIR2DS2 and association between '?I-labeled KIR2DS2
and Flag-DAP12 (Fig. 4, A and B). However, '®I-labeled
CD94/NKG2C was not detected in the KIR2DS2 immu-
noprecipitates and vice versa, demonstrating that there is
no detergent-stable higher order of complex assembled.
Taken together, these results indicate that receptor com-
plexes sharing the same signaling subunit, i.e., DAP12, are
compartmentalized on the cell surface.

DAP10 and DAP12 Form Distinct but Functionally Co-
operative Receptor Complexes in NK Cells. The NKG2D/
DAP10- and DAP12-associated receptor complexes were
further investigated by using polyclonal NK cell lines estab-
lished from healthy adults. Results from a representative
normal, polyclonal NK cell line are shown in Fig. 5 A. NK
cells were surface labeled with either %I or biotin, lysed in
digitonin bufter, and immunoprecipitated with control Ig,
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Figure 4. DAPI12 complexes with different ligand-binding receptors.
(A) A Ba/F3 transfectant expressing human CD94/NKG2C was trans-
fected with Flag-tagged DAP12 (left), and the resulting transfectant was
further transfected with KIR2DS2. Cells were sorted for positive KIR ex-
pression, stained with the indicated mAbs, and analyzed by flow cytome-
try. clg, control Ig. (B) The CD94/NKG2C/Flag-DAP12 and the
CD94/NKG2C/KIR2DS2/Flag-DAP12 transfectants were surface bio-
tinylated, lysed in digitonin lysis bufter, and the resulting lysates were im-
munoprecipitated with the indicated Abs. The immunoprecipitates were
separated by SDS-PAGE, transferred to Immobilon membrane, probed
with HRP-conjugated streptavidin, and visualized by using a chemilumi-
nescent substrate. The KIR2DS2 mAb DX27 has been consistently shown
to be a poor immunoprecipitating Ab (our unpublished observation).

anti-DAP10, or anti-DAP12. Anti-DAP10 exclusively
coimmunoprecipitated a protein of ~42 kD that labeled
with !2°] but did not label with biotin, consistent with the
size and labeling properties of NKG2D (8; Fig. 5 A). In
contrast, in this polyclonal NK cell line, anti-DAP12 did
not coimmunoprecipitate any proteins efficiently labeled
with 1%5I. However, biotinylated proteins were coimmuno-
precipitated with anti-DAP12 mAb, along with biotin-
labeled DAP12 proteins (Fig. 5 A). Because of the receptor
heterogeneity in polyclonal NK cell lines and also due to
the lack of specific serological reagents to discriminate be-
tween the activating and inhibitory isoforms of the KIR
family, the nature of these biotin-labeled DAP12-associated
proteins is undefined. Nonetheless, these experiments indi-
cated that as with the Ba/F3 cell transfectants, DAP10 and
DAP12 in normal, polyclonal NK cells associate with dif-
ferent receptors. There was no evidence for either '°I- or
biotin-labeled receptors that coimmunoprecipitated with
both DAP10 and DAP12.

Because of the inherent heterogeneity of receptors ex-
pressed within a polyclonal NK cell population, further
studies to explore the potential interactions between
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Figure 5. Separate DAP10 and DAP12 receptor complexes in poly-
clonal, normal NK cells and NKL cells. (A) A short-term polyclonal NK
cell line established from a normal, healthy blood donor was labeled with
either '%I (left) or biotin (right), lysed in 1% digitonin, and immunopre-
cipitated with the indicated Abs. Samples were analyzed by SDS-PAGE
(reducing conditions) and visualized by autoradiography or chemilumi-
nescence. Note that neither DAP10 nor DAP12 labels with I in NK
cells, whereas DAP12, but not DAP10, labels with biotin. clg, control Ig.
(B) The parental NKL cell line was positive when stained with anti-
NKG2D mAb 1D11, but was negative when stained with anti-KIR mAb
DX27 (left). NKL cells were transfected with KIR2DS2, sorted for posi-
tive KIR expression, and maintained in neomycin (right). (C) Both NKL
and the KIR2DS2* NKL transfectant were '>] labeled, lysed in digitonin
lysis buffer, immunoprecipitated with the indicated Abs, and the resulting
immune complexes were analyzed by SDS-PAGE (reducing conditions)
and autoradiography.

DAP10- and DAP12-associated receptors were performed
using a homogeneous, clonal NK cell line, NKL. The
NKG2D/DAP10 receptor complex on NKL cells has been
shown to mediate both anti-NKG2D Ab—-mediated redi-
rected killing of FcR-bearing target cells and direct killing
of MICA transfectants or MICA-expressing tumor cells (8,
10). NKL also expresses an endogenous DAP12 adaptor
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protein, but an associated ligand-binding receptor has not
been identified (our unpublished observation). Therefore,
to examine potential interactions between the DAP10- and
DAP12-associated receptor complexes, NKL cells were
transduced with a retrovirus encoding KIR2DS2 (Fig. 5
B). The KIR2DS2/DAP12 receptor on NKL was capable
of mediating potent anti-KIR mAb-redirected killing ac-
tivity against FcR-bearing targets (data not shown). To de-
termine whether DAP10 and DAP12 form distinct recep-
tor complexes in NK cells, the KIR2DS2-transfected NKL
cells were labeled with '?°1, lysed, and immunoprecipitated
with mAbs against DAP10, DAP12, KIR, or CD%4. As
shown previously (8), '>*I-labeled NKG2D was coimmu-
noprecipitated with an anti-DAP10 mAb (Fig. 5 C). In
contrast, no '??I-labeled protein was found to associate with
DAP12 in NKL. Although we cannot exclude the poten-
tial existence of DAP12-associated proteins that do not la-
bel efficiently with '?°I, we nonetheless have consistently
failed to detect any surface-labeled protein associating with
both DAP10 and DAP12 in NKL cells or in other poly-
clonal NK lines (Fig. 5 A, and our unpublished observa-
tions). Expression of KIR2DS2 in NKL cells led to the sur-

A Re-directed killing__

% Killing

251 121 61 31 11

face expression of KIR2DS2 and the complex formation
between DAP12 and KIR2DS2, as shown by surface label-
ing and coimmunoprecipitation experiments (Fig. 5 C).
Opverall, these results using Ba/F3 cell transfectants and
the NKL cell line have been validated by using polyclonal
NK cells lines established from normal, healthy individuals
(Fig. 5 A). In these experiments, there was no evidence for
the presence on the cell surface of heterodimers composed
of DAP10 and DAP12. In no case did we observe coim-
munoprecipitation of NKG2D with DAP12 or any of the
DAP12-associated receptors (e.g., KIR2DS or CD94/
NKG2C) coimmunoprecipitating with DAP10. Further-
more, KIR2DS2, CD94/NKG2C, and NKG2D receptors
have not been detected in immunoprecipitates from NK
cells using either anti-CD3{ or FceRIy (data not shown).
Taken together, these data clearly demonstrate that DAP10
and DAP12 form distinct receptor complexes in NK cells.
We have observed that anti-NKG2D mAb alone can
trigger cytotoxicity mediated by normal, polyclonal NK
cell lines (Fig. 6 A, left). By contrast, cross-linking of
NKG2D alone, even at saturating concentrations of mAb,
failed to induce substantial levels of cytokine production
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Figure 6. Functional cooperation between DAP10 and DAP12 receptor complexes. (A) A normal polyclonal NK cell line was assayed for Ab-redi-
rected cytotoxicity against 3!Cr-labeled FcR* P815 target cells in the presence of anti-CD56 mAb Leu 19 (used as a negative control) or anti-NKG2D
mADb 1D11 (at a 1:1,000 dilution of dialyzed ascites; left). In parallel, the normal polyclonal NK cell line was cultured for 20 h with immobilized control
Ig (clg), anti-CD56 mAb Leu 19, or anti-NKG2D mAb 1D11 (at 1:1,000 dilution of dialyzed ascites), and culture supernatants were analyzed by ELISA
for IFN-y (right). E:T, effector/target. Comparable results were obtained in two independent experiments using normal, polyclonal NK cell lines. (B)
The KIR2DS2-expressing NKL cells were stimulated with immobilized anti-KIR mAb DX27 (starting at a concentration of 1 wg/ml) or anti-NKG2D
mAb 1D11 (starting at a dilution of 1:1,000 dialyzed ascites). (C and D) KIR2DS2* NKL cells were stimulated with a fixed dilution (1:5,000) of either
control ascites or anti-NKG2D 1D11 ascites, together with either a control mAb or anti-KIR mAb DX27 at final concentrations of 31, 16, 8, and 4 ng/
ml (C), or 62, 31, 16, and 8 ng/ml (D). Cells were stimulated in 96-well plates at 37°C for 20 h, and the supernatants were analyzed by ELISA for IFN-y
(C) or GM-CSF (D). Each stimulation condition was conducted in triplicate and the data were representative of three independent experiments.
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(Fig. 6 A, right). It is possible that these differential re-
sponses might be inherent to the different assays. In the cy-
totoxicity assays, other cell surface receptors on the effector
and target cells (e.g., LFA-1 on the NK cells and intracellu-
lar adhesion molecules [[CAMs] on the target cells, or oth-
ers) might be required to permit NKG2D function. Alter-
natively, because triggering NK cell-mediated cytotoxicity
is a rapid event not requiring transcription or translation,
the induction of cytokine production via NKG2D may be
more stringent and require additional soluble or mem-
brane-bound costimulators.

There are 10 functional KIR genes with extensive allelic
polymorphism that encode receptors that can be either ac-
tivating or inhibitory (25). Within a polyclonal NK cell
population, these are arrayed on overlapping subsets and
some NK cell clones may simultaneously express four or
more of these genes (26). Because the extracellular domains
of the activating and inhibitory receptors are very similar,
the existing mAbs against the molecules do not discrimi-
nate between them. Therefore, when polyclonal NK cells
are incubated with an anti-KIR or anti-CD94 Ab, a com-
bination of both activating and inhibitory receptors on dif-
ferent subsets are simultaneously engaged, often giving am-
biguous results. For this reason, in order to address the issue
of whether DAP12-associated receptors might cooperate
with NKG2D/DAP10 in NK cell activation, experiments
were performed with the well-characterized, homogeneous
NK cell line NKL.

Cross-linking of the KIR2DS2/DAP12 receptor on
NKL cells resulted in the dose-dependent secretion of
IFN-vy and GM-CSF (Fig. 6 B), consistent with prior stud-
ies using anti-KIR mAbs to stimulate other NK cell lines
and clones bearing activating KIR molecules (27). How-
ever, under suboptimal conditions in which few activating
KIR molecules were engaged, marked synergy was ob-
served between KIR2DS2/DAP12 and NKG2D/DAP10
in NKL cells in which coligation of both receptors showed
a significant increase in the secretion of IFN-y and GM-
CSF (Fig. 6, C and D). Taken together, the cooperative
function between NKG2D and the ITAM-containing
DAP12-associated receptors suggests that the NKG2D/
DAP10 receptor may play an important costimulatory role
in the activation of NK cells and T cells.

The NKG2D ligands, MICA and MICB, are expressed
only in low levels on normal tissues, but are induced by
stress or transformation, making them potentially important
components in immune surveillance (28-30). The activa-
tion status of NK cells and T cells is believed to be con-
stantly regulated by a delicate balance between activating
and inhibitory receptors. Cells are kept in a resting state
when this equilibrium is maintained in the normal mi-
croenvironment. However, induction or upregulation of
MICA/B on unhealthy, abnormal cells due to transforma-
tion or infection may engage the NKG2D/DAP10 recep-
tors on NK cells and cytotoxic T cells, disrupting this equi-
librium.

Like CD28, which also activates the PI3-kinase signaling
pathway (31-33), NKG2D/DAP10 may play a costimula-

tory role in the activation of NK cells and T cells. CD28 is
an important costimulator for the activation of resting
CD4% and CD8" T cells (for a review, see reference 34).
However, the clearance of lymphocytic choriomeningitis
virus by CTLs in CD28-deficient mice was normal (35),
suggesting a mechanism of CD8% T cell activation inde-
pendent of CD28. Because DAP10 and CD28 both con-
tain a YxxM signaling motif capable of mediating PI3-kinase
activation, it is possible that NKG2D/DAP10 may serve as
an alternative costimulator in the absence of CD28. In hu-
mans, a significant proportion of human CD8* T cells lack
CD28 (36), but these cells do express NKG2D/DAP10. In
addition, it is noteworthy that MICA/B are expressed on
epithelial cells (28), which lack the ligands for CD28 (i.e.,
CD80 and CD86). Therefore, it is tempting to speculate
that the NKG2D/DAP10 receptor may provide costimula-
tion for NK cells and CTLs when they encounter virus-
infected or transformed nonhematopoietic tissues.
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