Interferons Regulate the Phenotype of Wild-type and Mutant Herpes Simplex Viruses In Vivo

By David A. Leib,*‡ Travis E. Harrison,* Kathleen M. Laslo,* Michael A. Machalek,* Nathaniel J. Moorman,* and Herbert W. Virgin‡§

From the *Departments of Ophthalmology and Visual Sciences and the ‡Department of Molecular Microbiology, the §Center for Immunology, and the iDepartment of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110

Summary

Mechanisms responsible for neuroattenuation of herpes simplex virus (HSV) have been defined previously by studies of mutant viruses in cultured cells. The hypothesis that null mutations in host genes can override the attenuated phenotype of null mutations in certain viral genes was tested. Mutants such as those in infected cell protein (ICP) 0, thymidine kinase, ribonucleotide reductase, virion host shutoff, and ICP34.5 are reduced in their capacity to replicate in nondividing cells in culture and in vivo. The replication of these viruses was examined in eyes and trigeminal ganglia for 1–7 d after corneal inoculation in mice with null mutations (−/−) in interferon receptors (IFNR) for type I IFNs (IFN-α/βR), type II IFN (IFN-γR), and both type I and type II IFNs (IFN-α/β/γR). Viral titers in eyes and ganglia of IFN-γR−/− mice were not significantly different from congenic controls. However, in IFN-α/βR−/− or IFN-α/β/γR−/− mice, growth of all mutants, including those with significantly impaired growth in cell culture, was enhanced by up to 1,000-fold in eyes and trigeminal ganglia. Blepharitis and clinical signs of infection were evident in IFN-α/βR−/− and IFN-α/β/γR−/− but not control mice for all viruses. Also, IFN s were shown to significantly reduce productive infection of, and spread from intact, but not scarified, corneas. Particularly striking was restoration of near-normal trigeminal ganglion replication and neurovirulence of an ICP34.5 mutant in IFN-α/βR−/− mice. These data show that IFNs play a major role in limiting mutant and wild-type HSV replication in the cornea and in the nervous system. In addition, the in vivo target of ICP34.5 may be host IFN responses. These experiments demonstrate an unsuspected role for host factors in defining the phenotypes of some HSV mutants in vivo. The phenotypes of mutant viruses therefore cannot be interpreted based solely upon studies in cell culture but must be considered carefully in the context of host factors that may define the in vivo phenotype.

Key words: herpes simplex virus mutants • interferons • mice • pathogenesis

In humans and experimental animals the pathogenesis of herpes simplex virus (HSV)-1 occurs in a series of discrete stages (1). A cute viral replication at a peripheral site such as the cornea is followed by viral entry into neuronal termini. Corneal infection is followed by intra-axonal transport, which moves the virus to the trigeminal ganglia, where further replication may occur before clearance of infectious virus and the establishment of latency. Failure to clear the virus may result in central nervous system infection, encephalitis, and death. Latency may periodically break down in response to certain stimuli, leading to viral reactivation and shedding. The host factors that regulate the discreet stages of pathogenesis are incompletely defined. In this paper, the role of host IFN s in determining the phenotypes of herpesvirus mutants in vivo is examined.

The ability to create recombinant viruses coupled with the availability of a variety of laboratory animal models of HSV infection have elucidated the roles of viral genes in specific stages in pathogenesis (2–6). Studies with mutant viruses have shown that many HSV genes are dispensable for viral replication in dividing cells (7). However, such mutants often fail to replicate efficiently in nondividing cultured cells. In animal models, such genes often play key roles, particularly in promoting acute replication either at the primary site of infection or in the nervous system (2, 6, 8–10). To date, studies of HSV mutants have generally assumed, first, that in vivo phenotypes observed are determined solely by...
specific virus-cell interactions, and second, that the function of the gene (for example, promotion of efficient replication in nondividing cells) demonstrated in cell culture must correlate with and account for phenotypic differences observed in vivo. Only a few studies have examined a role for the host immune system in influencing the in vivo phenotypes of HSV strains and mutants. For example, infected cell protein (ICP) 0, an immediate-early gene, designated in this study (17-21). ICP0 is packaged in the virion and after infection colocalizes with and redistributes nuclear domain 10 antigens, and also attenuates DNA-dependent protein kinase activity (22, 23). ICP0 null mutant viruses exhibit significantly reduced replication in culture, especially at low multiplicities of infection and at certain points in the cell cycle (24). The critical role of ICP0 in regulating viral and host gene expression is thought to be sufficient to explain the fact that ICP0 mutant viruses are severely compromised in animal models, exhibiting impaired replication, establishment of latency, and reactivation (2, 25). A role for host factors in determining the in vivo phenotype of ICP0 mutants has not been demonstrated.

The early genes tk and r are two of several nucleotide metabolism enzymes that allow HSV to replicate autonomously of the cell-cycle status of the host cell. Viral tk phosphorylates deoxypyrimidine nucleosides and r catalyzes the reduction of ribonucleoside triphosphates (26, 27). Both genes are dispensable in dividing cells, but are essential for viral replication in nonmitotic cells, where it is thought that cellular homologues are not present in sufficient quantity to compensate for r or tk null mutations (10, 15). In mice, mutants in r or tk are significantly impaired for replication in the cornea, although the extent of impairment for r mutants depends on the nature of the mutation (4, 6, 28). However, in all cases mutant viruses are cleared more rapidly than are wild-type viruses. Reduced replication in eyes has been proposed to be due to an inability of r or tk mutants to replicate efficiently at 38°C in mouse cells, coupled with the nonmitotic status of much of the corneal epithelium (28). In the adult nervous system, replication of r and tk mutants is undetectable and these mutants can establish latency but are unable to reactivate. The lack of replication in the nervous system is clearly consistent with the limited nucleotide metabolism in neurons, and a role for host factors in determining the in vivo phenotypes of r or tk mutants has not been demonstrated.

M utants in virion host shutoff (vhs) and ICP34.5 were of particular interest in these studies, primarily because the highly significant degree of attenuation of such mutants in vivo suggests a strong role for host factors in determining the mutant phenotype given their near wild-type replica-

Table I. Summary of HSV-1 Mutants Used in this Study

<table>
<thead>
<tr>
<th>Virus (parent strain)</th>
<th>Mutated gene</th>
<th>Kinetic class in this study</th>
<th>Growth defect in culture</th>
<th>Growth defect in vivo</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOS</td>
<td>Wild-type</td>
<td>N/A</td>
<td>KOS</td>
<td>N one</td>
<td>64</td>
</tr>
<tr>
<td>dlx3.1 (KOS)</td>
<td>ICP0</td>
<td>Immediate-early</td>
<td>Δ0</td>
<td>All cells</td>
<td>13</td>
</tr>
<tr>
<td>hR3 (KOS)</td>
<td>r</td>
<td>Early</td>
<td>ΔR R</td>
<td>Nondividing cells</td>
<td>15, 65</td>
</tr>
<tr>
<td>dl8.36k (KOS)</td>
<td>tk</td>
<td>Early</td>
<td>ΔTK</td>
<td>Nondividing cells</td>
<td>4, 47</td>
</tr>
<tr>
<td>U141 H8 (KOS)</td>
<td>vhs</td>
<td>Late</td>
<td>Δvhs</td>
<td>N one</td>
<td>29</td>
</tr>
<tr>
<td>17T ermA (17)</td>
<td>ICP34.5</td>
<td>Late</td>
<td>Δ34.5</td>
<td>N nondividing cells</td>
<td>9</td>
</tr>
<tr>
<td>17T ermA (17)</td>
<td>Marker rescue</td>
<td>N/A</td>
<td>Δ34.5</td>
<td>N one</td>
<td>N one</td>
</tr>
</tbody>
</table>

N/A, not applicable.
tion in culture (9, 29). vhs is a tegument protein that induces the destabilization of host mRNA, leading to rapid cessation of host protein synthesis after infection (30). vhs also degrades viral mRNA and serves to facilitate the transition of viral gene expression from one kinetic class to the next. The effect of vhs deletion on viral replication in cell culture is modest, but is very significant in mice, in the cornea, trigeminal ganglion, and the brain (29). The poor replication at the periphery probably explains the requirement for vhs for the efficient establishment of latency (31). ICP34.5 shows homology to the DNA damage protein GADD34 and acts by precluding the shutoff of protein synthesis with apoptosis by regulation of the IFN-induced double-stranded RNA-dependent protein kinase R (PKR) pathway (32, 33). The effect of deletion of ICP34.5 upon replication in permissive cells is minimal, but ICP34.5 mutants are impaired for replication in the cornea (9, 34, 35). More importantly, these mutants are profoundly neuroattenuated in trigeminal ganglia after corneal infection, and in the brain after intracranial injection (9, 35, 36). It is possible that the replication of ICP34.5 mutants may be cell cycle dependent, explaining why such mutants fail to replicate efficiently in postmitotic or quiescent cells. Specific host factors that influence the phenotypes of vhs or ICP34.5 mutants in vivo have not been identified fully.

The immune response to acute HSV infection involves both innate and acquired immunity. The fact that all mutants examined in this study show striking attenuation within 1 to 2 d after infection suggested a pivotal role for mediators of innate immunity. Key mediators of innate resistance to viral infection include the IFNs, although the precise mechanisms by which they exert their effect upon HSV infection is not fully understood. IFN-α has been shown to inhibit the onset of immediate-early HSV gene expression, and in mice IFN-α is a potent inhibitor of replication in the cornea (37–40). In addition, IFN-α/β serves to activate host defenses such as NK cells, which have themselves been shown to be important in controlling HSV infection and pathology (41). IFN-α/β has also been suggested to be important for limiting progression of infection from peripheral tissues to the nervous system (42). IFN-γ has been the most extensively studied of the IFNs in HSV infection. IFN-γ has been shown to vary widely in its efficacy in reducing HSV growth depending on its target cell, and in culture, HSV replication appears less sensitive to inhibition by IFN-γ than to IFN-α/β (43). However, it appears that IFN-γ may play an important role in the clearance of HSV from the cornea and in resistance to encephalitis, possibly by inhibiting apoptosis of neurons (44, 45).

In this study, mice that are genetically altered in their abilities to respond to IFNs by virtue of null mutations in IFN Rs were corneally infected with mutant viruses whose ability to replicate in normal mice has been shown to be significantly reduced either in corneas or trigeminal ganglia, or both. The data indicate that the phenotypes of a variety of viruses is significantly impacted by the ability of the infected mice to respond to IFNs. The phenotype of HSV mutants therefore must always be interpreted with careful regard to the host’s immune response.

Materials and Methods

Viruses and Cells. African green monkey kidney (Vero) cells were propagated and growth and assay of all virus strains was done as previously described (46). The KOS strain of HSV-1 was the background for mutant viruses dl3.1 (ICP0 deletion termed here ∆0, provided by Dr. Priscilla Schaffer, University of Pennsylvania, Philadelphia, PA [13]), hR3 (ribonucleotide reductase deletion termed here ∆RR, provided by Dr. Sandra Weller, University of Connecticut, Farmington, CT [15]), U41NHB (vhs nonsense mutation termed here ∆vhs [29]), and dl836tk (tk deletion, termed here ∆tk [47]). The ICP34.5 mutant, 17TermA (termed here ∆34.5) and its marker-rescued virus, 17ermAR (termed here ∆34.5R), were made in the background of strain 17 and were provided by Dr. Richard Thompson, University of Cincinnati, Cincinnati, OH (9). A summary of information and abbreviations on all seven viruses used in this study is provided in Table I.

Mice. All animal handling and procedures were in compliance with Federal and University policies. Mice were housed and bred in the Washington University School of Medicine biosafety level 2 animal facility, where sentinel mice were screened every 3–6 mo for mouse pathogens and determined to be negative. All mice used in this study were in a pure 129Ev/Sv background for mutant viruses and were all originally obtained from M ichel Aguet (Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland; 48).

Animal Procedures. 6–8-wk-old mice were anesthetized with xylazine and ketamine, corneas were scarified with 10 interlocking strokes with a 27-gauge needle, and 5 μl of medium containing 2 × 10⁶ or 2 × 10⁷ PFU of virus was added per eye. Lids were massaged together briefly to promote adsorption of virus. Eye swab and trigeminal ganglion assays of acute infection were performed as previously described (29). In brief, for eye swabs, eyes were proptosed and moistened cotton swabs used to sample the surface of the eye, going three times in a circular fashion around the eye and twice across the eye making an “x,” before placing the swab in 1 ml of tissue culture medium. Sampled trigeminal ganglia were homogenized in 1 ml of tissue culture medium containing 1-mm beads in a Mini-Beadbeater-8 (BioSpec Products). All samples were filtered using standard plaque assay on Vero cells. All data presented are logarithmic means ± SEM and the limit of detection was 10 PFU. Clinical signs of infection (eyelid swelling and loss of facial hair) were measured on a semi-quantitative scale of 0–4 as previously described (49). All mouse procedures conformed to protocols approved by the Washington University Animal Studies Committee.

Results

Infection of Immunocompetent 129 Mice. The replication of KOS and other mutants used in this study has not been studied previously in strain 129 mice. Therefore, it was important to determine that the patterns of growth seen in other wild-type mouse strains were reproduced in strain 129. The replication in eyes of ∆vhs, ∆RR, and ∆0 mutant viruses was reduced relative to KOS in 129 wild-type ani-
The replication of the ΔRR mutant was reduced by \(\sim 10^{-1,000}\)-fold and was cleared more rapidly than KOS. The growth of the Δ0 and Δvhs mutants was more significantly impaired, up to 10,000-fold relative to KOS. This is especially notable for the Δvhs mutant, whose replication in tissue culture is essentially identical to that of KOS. In trigeminal ganglia of 129 mice, the replication of all viral mutants was undetectable on day 3 after infection, at which time the titer of KOS was \(10^4\) PFU per ml (Fig. 1 B), day 3 being the peak of viral replication in the trigeminal ganglion. Taken together, these data show that these mutants exhibit impaired replication in 129 mice relative to wild-type virus in both corneas and trigeminal ganglia, consistent with previously published data (Table I and references 2, 6, 29).

Infection of IFN-γR−/− Mice. Previous work from other laboratories showed that the deletion of IFN-γR had little impact upon early acute wild-type HSV infection in mice (50), while others have argued for an important role (44, 45). To examine this further, IFN-γR−/− mice were infected with \(2 \times 10^6\) PFU with either KOS or Δvhs. Consistent with these previous studies, the early acute replication patterns of KOS and Δvhs were unaltered whether examined in 129 or IFN-γR−/− mice (Fig. 1, C and D).

Figure 1. (A) Replication of wild-type KOS and mutants in vhs (Δvhs), rr (ΔRR), and ICP0 (Δ0) in eyes of control 129 mice from day 1 to day 4 after infection. Values are logarithmic means for at least eight samples for each virus. (B) Replication of KOS, Δ0, Δ34.5vhs, and ΔRR viruses in trigeminal ganglia of control 129 strain mice 3 d after infection. Values are logarithmic means for at least eight samples for each virus. (C) Replication of wild-type KOS and Δvhs mutant viruses in eyes of IFN-γR−/− mice from days 1 to 3 after infection. Values are logarithmic means for four samples for each virus. (D) Replication of KOS and Δvhs viruses in eyes of IFN-γR−/− mice performed in parallel with the experiment shown in C. Values are logarithmic means of four samples for each virus.
Infection of IFN-α/β−/− and IFN-α/β/γR−/− mice to determine the role of IFN-α/β in the reduced growth phenotypes of the mutant viruses IFN-α/β−/− and IFN-α/β/γR−/− mice were infected in parallel with 129 mice, with wild-type or mutant viruses (Fig. 2, A and B). In the eyes of the IFN-γ−/− mice there was an increase in replication of ~10-fold on days 1-4 after infection for KOS, relative to growth in 129 mice. For mice revealed that significant enhancement of viral replication, with 10^4–10^5 comparable to those seen in IFN-α/β/γR−/− mice. In the eyes of the IFN-α/β/γR−/− mice, there was a very significant enhancement of viral replication, with 10^4–10^5 PFU per ml in eye swab samples. At comparable times in 129 mice, titers for these mutants were 10^2 PFU per ml or undetectable. These enhanced titers were such that they were within 10-fold of the titers seen for KOS. Titers for ∆vhs were enhanced by 10–100-fold in IFN-α/β−/− and IFN-α/β/γR−/− mice. Although this enhancement was significant (P < 0.001 by Student’s t test), it was reproducibly less than was seen for ∆0 and ∆R. Overall, the patterns of viral replication were very similar in IFN-α/β−/− and IFN-α/β/γR−/− mice. Given that the IFN-α/β/γR−/− mice are derived from crossing IFN-α/β−/− with IFN-γ−/− mice, these data are consistent with observations of previous work (50) as well as this study, indicating that IFN-γ plays only a minor additional role in IFN-α/β in controlling early acute infection.

Initial experiments in IFN-α/β−/− and IFN-α/β/γR−/− mice showed that the replication of ∆0 and ∆vhs was undetectable in trigeminal ganglia on day 3 after infection, normally the peak of viral replication in the ganglion (2). However, longer time course experiments in IFN-α/β−/− (data not shown) and IFN-α/β/γR−/− (Fig. 2, C and D) mice revealed that ∆0 and ∆vhs were capable of replication to readily detectable levels in trigeminal ganglia of IFN-α/β/γR−/− mice when sampled from day 3 onwards, ranging from 10^3 to 10^6 PFU per ml of ganglion homogenate. At these times, both mutant viruses were undetectable in the trigeminal ganglia of 129 mice.

Taken together, these data show that all viruses tested, even those with severe growth restrictions in vivo due to disparate mutations, can replicate with significantly increased efficiency in IFN-α/β−/− and IFN-α/β/γR−/− mice in both eyes and trigeminal ganglia. Furthermore, patterns of replication seen in IFN-α/β/γR−/− mice were comparable to those seen in IFN-α/β/γR−/− mice.

Characterization of tk and ICP34.5 Mutants in IFNR−/− Mice. Viruses containing mutations in tk and ICP34.5 have been extensively characterized in vivo in terms of replication, neurovirulence, and establishment and reactivation of latency. As described in the introduction, explanations for their neuroattenuation have been formulated from a large body of data. Thus, these mutants were examined more closely in this study to assess the impact of IFN's on their phenotypes.

The replication of ∆tk was significantly enhanced (10–100-fold) in the corneas of IFN-α/β/γR−/− compared with 129 mice (Fig. 3 A). In 129 mice, ∆tk was cleared by day 5, at which time there was >10^5 PFU per ml persisting in the IFN-α/β/γR−/− mice. In addition, blepharitis and periocular lesions became evident in the IFN-α/β/γR−/− mice by day 7, whereas the 129 mice looked essentially uninfected.

Moreover, ∆tk replication was readily detected in trigeminal ganglia of IFN-α/β/γR−/− mice on days 3, 5, and 9, whereas, consistent with previous observations in wild-type mice, no virus was detectable in the 129 mice (Fig. 3 B).

The ICP34.5 mutant, ∆34.5, was the only mutant tested in this study whose corneal replication was only modestly higher in IFN-α/β−/− compared with 129 mice, with a <10-fold increase over the first 3 d of infection (Fig. 4, A and B). However, the mutant was cleared more rapidly from 129 than IFN-α/β−/− mice. Similar to wild-type KOS, the marker-rescued virus ∆34.5R showed >10-fold increased replication in IFN-α/β−/− eyes compared with 129 mice. Replication of ∆34.5 was not detectable in ganglia of 129 mice at any time (Fig. 4 C). In contrast, replication of ∆34.5 in the trigeminal ganglia of IFN-α/β−/− mice was robust with a titer of 10^6 PFU per ml on day 3 and 3 × 10^4 on day 5, these titers being at most 10-fold less than its marker-rescued virus ∆34.5R (Fig. 4 D). Moreover, all IFN-α/β−/− mice infected with ∆34.5 that were not killed for trigeminal ganglion data died on or before day 9 after infection with symptoms consistent with viral encephalitis. Data comparable to those seen for ∆34.5 and ∆34.5R replication in IFN-α/β−/− mice were also observed in corneas and ganglia of IFN-α/β/γR−/− mice (data not shown).

Infection of Scarified and Nonscarified IFN-α/β/γR−/− Mice. Corneal scarification is a prerequisite for efficient uptake of HSV and other materials in normal mice such as horseradish peroxidase from the cornea into the trigeminal ganglion.
In the absence of scarification, replication of KOS both at the cornea and in ganglia is extremely limited (Strelov, L.I., and D.A. Leib, unpublished data, and Fig. 5). Therefore, infection of neurons is thought to be the result of direct uptake into axonal termini coupled with local amplification and subsequent retrograde axonal transport of virus. Since IFNs played a key role in determining the corneal phenotype of even very attenuated viruses, it was of interest to assess whether corneal scarification is actually needed for establishment of HSV corneal infection in the absence of IFN responsiveness. Control 129 and IFN-α/β/γR2/2 mice were either scarified or not and infected with 2 x 10^6 PFU of KOS. In 129 mice, there was robust replication of KOS in scarified corneas, with titers >2 x 10^4 PFU per ml 4 days after infection (Fig. 5 A). In contrast, replication in the nonscarified group was undetectable with one virus-positive sample (out of eight) on day 2 after infection. However, in IFN-α/β/γR−/− mice, replication was readily detected in both scarified and nonscarified mice, although there was a delay in onset of replication in the nonscarified group. The level of replication in the scarified IFN-α/β/γR−/− mice was significantly higher than in the nonscarified mice at all time points tested. A similar pattern of replication emerged in the trigeminal ganglia (Fig. 5 B). In 129 mice, replication was virtually undetectable in nonscarified mice, but robust in scarified mice. In IFN-α/β/γR−/− mice, replication was readily detectable for both scarified and nonscarified groups, but there was a delay in onset of replication in the nonscarified group. By day 4, titers of virus in the nonscarified IFN-α/β/γR−/− mice were comparable to those of scarified 129 mice. These data show that the IFNs play a key role in determining the outcome of viral infection of the intact cornea.

Discussion

The results presented in this study indicate that the acute replication patterns in eyes and trigeminal ganglia of both mutant and wild-type viruses tested are significantly impacted by IFNs. In particular, this study underscores the critical role played by IFN-α/β in the control of early acute replication of HSV, and the relatively minor role of IFN-γ.
These data are consistent with those of Su et al. (52), who showed that neutralizing antibody-mediated depletion of IFN-α/β led to a $>$1,000-fold increase in ocular viral titers and a corresponding increase in corneal opacity after infection with wild-type HSV-1. Correspondingly, the data of Cantin et al. (50) showed a less than twofold increase in viral titers in trigeminal ganglia of IFN-γ R−/− mice compared with control isogenic mice. These protective effects of IFN-α/β in mice are likely to be due to induction of an antiviral state in target cells coupled with activation of other nonspecific host defenses such as NK cells and probably represents the first line of defense against HSV infection. With respect to NK cells, one study showed that resistance to acute wild-type HSV-1 infection correlated to early IFN production but not NK cell activity, suggesting that NK cell activation is not the primary mechanism of IFN-mediated resistance (53). A specific role for IFNs is further supported by the observation that, in contrast to data presented here for IFN-α/β R−/− mice, tk and ICP34.5 mutants are incapable of significant replication in the nervous system of SCID mice, which lack adaptive immunity but express and respond to IFNs (54–56).

The behavior of the tk and ICP34.5 mutants in IFN-α/β R−/− and IFN-α/β/γR−/− mice is of particular interest and worthy of further discussion. Both of these genes have been extensively studied and shown by several independent laboratories to be critical determinants of viral replication in the nervous system and to be essential for efficient peripheral neuroinvasion. tk mutants in the mouse eye model typically show robust (albeit reduced relative to wild-type virus) replication in the cornea, with little or no replication observed in the trigeminal ganglion (4). However, tk mutants do establish latency, as judged by the presence of viral DNA in the ganglion, although with 10-fold reduced efficiency (57). Reactivation, however, is minimal or absent. The lack of tk mutant virus replication and reactivation in neurons is consistent with the absence of complementary host tk activity in nondividing cells. How, then, is a tk mutant able to replicate in the nervous system of IFN R−/− mice as shown in this study? One clue comes from the observations that tk mutants can be made to reactivate by addition of thymidine to the culture medium of latently infected ganglia and that IFN-α can significantly reduce steady state levels of thymidine and thymidine metabolites in HSV-infected cells (58, 59). Therefore, it is possible that the lack of IFN-α/β receptors in the knockout mice leads to higher intracellular levels of thymidine in the nervous system, thereby allowing a tk-deleted virus to replicate to detectable and significant levels. An alternate hypothesis is that the increased viral replication and persistence in the cornea leads to a higher viral load in the ganglion with a concomitant rise in viral trans-acting factors such as VP16 and ICP0, thereby promoting a lytic infection. This hypothesis seems unlikely since increasing the infectious dose of mutant virus does not promote replication in the ganglion if the virus is inherently crippled for replication at that site (Strelow, L.I., and D.A. Leib, unpublished data). In addition, such increased levels of trans-acting factors would probably not be able to overcome a block in thymidine metabolism and DNA replication.

ICP34.5 mutants exhibit significantly reduced replication in eyes of wild-type mice and minimal replication in the nervous system after peripheral infection. This lack of replication and neurovirulence is believed to be due to the ability of ICP34.5 to preclude the shutoff of protein synthesis by IFN-inducible PKR (32, 33). IFNs induce the synthesis of PKR in an inactive form, which subsequently becomes activated by binding of viral double-stranded RNA and homodimerization. Once activated, PKR causes the phosphorylation of the basal translation initiation factor eIF2α such that translation and protein synthesis are arrested. ICP34.5 interferes with this host protective pathway by binding to and redirecting the activity of protein phosphatase 1 to dephosphorylate the basal translation factor eIF2α, thereby prolonging protein synthesis and viral replication. Cells infected with ICP34.5− viruses therefore exhibit premature shutoff of protein synthesis. Thus, one hypothesis to explain the data in this study is that the significantly increased neurovirulence of the ICP34.5 mutant in IFN-α/β R−/− and IFN-α/β/γR−/− mice is due to reduced intracellular levels of PKR that result from an inability to respond to IFNs. A lack of PKR would result in low efficiency phosphorylation of eIF-2α and an inability of the host to shut off protein synthesis, obviating the need for ICP34.5. This could explain why ICP34.5 mutants exhibit almost wild-type virulence and replication in IFN R−/− mice. This near wild-type replication and lethality of this severely neuroattenuated virus should be additionally considered in the light of ongoing phase 1 clinical trials using intracranial injection of ICP34.5 mutants for treatment of human glioma (60). The use of viruses singly deleted in the ICP34.5 locus may present a potentially lethal challenge to those individuals with any deficiencies in IFN responses. The use of viruses with double deletions, such as ICP34.5, in addition to ribonucleotide reductase may therefore be preferable (61).

The phenotypes of the ICP0 and vhs mutants in IFN R−/− mice are also worthy of discussion. With respect to ICP0, it has been shown that the growth of ICP0 mutants is compensated by a host function which is expressed 8 h after release from G0/G1 cell-cycle arrest (24). In wild-type mice, the expression and response to IFNs after virus infection may lead to a nonproliferative state in infected cells. In IFN R−/− mice, IFNs cannot induce such a nonproliferative state, allowing more cells to remain freely cycling. Therefore, it is possible that greater replication of ICP0 mutants observed in IFN R−/− mice is due, at least in part, to an enhanced level of expression of the complementary host factor due to a higher level of proliferation in infected cells.

The phenotype of the vhs mutant is enigmatic in the sense that it is the least compromised in terms of its replication in cell culture and yet the most compromised in mice (29). Moreover, it is the virus whose replication in the cornea is least enhanced by lack of IFN responsiveness. However, the observation of significant replication of Δvhs in...
the trigeminal ganglion is consistent with the idea that the replication of this mutant is not compromised in the nervous system to the same extent that it is in the cornea. When Δvhs can gain access to the nervous system either by corneal infection of IFN-α/β/γR−/− mice or intracerebral infection of wild-type mice (29), the virus can replicate to significant levels. The fact that the mutants tested in IFN R−/− mice in this study do not behave in the same way strongly suggests that there is some degree of specificity to the phenotypes observed and not just a global enhancement of all viral replication to the same level. There is, therefore, an IFN-independent impairment of vhs mutant virus replication in vivo. Whether this is related to the observed alterations in MHC class I expression previously reported is an important issue for further experimentation (62).

The intact cornea is an effective barrier to HSV infection, and thus many experimental eye models employ corneal scarification as a means to promote peripheral infection and nervous system invasion (34, 46, 63). However, the extent to which virus can penetrate the cornea without scarification is virus strain dependent. Strain KOS, used in this study, has been shown in mice and rabbits to be virtually incapable of corneal and nervous system invasion without prior scarification, whereas HSV-1 strain McKrae can penetrate without scarification (34). The mechanism by which scarification promotes viral invasion is not known, but a common assumption is that the mechanical damage to the corneal epithelium permits direct access to the nerve termini, allowing a conduit into the peripheral nervous system. The data in this study suggest that major determinants of corneal resistance to viral invasion are the IFNs, since KOS was capable of robust replication in corneas and ganglia of nonscarified IFN R−/− mice. This is consistent with the idea that different HSV strains may be differentially susceptible to the effects of IFNs (11, 12).

In conclusion, this study has shown the critical role played by IFN, especially IFN-α/β, in controlling early acute HSV infection, and has also shown that in the absence of IFN responsiveness mice are highly susceptible to infection even by very attenuated viruses. These studies show that the attenuation of viral mutants must be carefully considered within the context of the immune response, especially early-onset innate immunity. Furthermore, any attenuation of growth of HSV mutants in culture should be examined with respect to IFNs. The use of these and other genetically altered mice will now allow study of the interactions of viral genes and cytokines during the establishment, maintenance, and reactivation of viral latency.

We acknowledge Priscilla Schaffer (University of Pennsylvania, Philadelphia, PA), Rick Thompson (University of Cincinnati, Cincinnati, OH), and Sandy Weller (University of Connecticut, Farmington, CT) for provision of viral mutants, and Andy O’Guin for technical assistance. We thank Sam Speck, Lynda Morrison, and members of the Leib, Morrison, Speck, and Virgin laboratories for helpful discussions.

This study was supported by grants from the National Institutes of Health (RO1 EY09083 to D.A. Leib and RO1 AI39616 to H.W. Virgin). Core support from the National Institutes of Health (P30 EY02687) and from Research to Prevent Blindness Inc. to the Department of Ophthalmology and Visual Sciences is gratefully acknowledged.

Address correspondence to David A. Leib, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Box 8096, 660 South Euclid Ave., St. Louis, MO 63110. Phone: 314-362-2689; Fax: 314-362-3638; E-mail: leib@am.seer.wustl.edu

Received for publication 25 September 1998 and in revised form 15 December 1998.

References

5. Goldsmith, K., W. Chen, D.C. Johnson, and R.L. Hendricks. 1998. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell...
17. Everett, R.D. 1984. Transactivation of transcription by a
16. Field, H.J., and P. Wildy. 1978. The pathogenicity of thymi-
6. Yamada, Y., H. Kimura, T. Morishima, T. Dakoku, K. M aeno,
and Y. Nishiyama. 1991. The pathogenicity of ribonucleo-
17syn
1998. The BglII-N fragment of herpes simplex virus type 2
1997. A cellular function can enhance gene expression and plating efficiencies of a mutant
defective in the gene for ICP0, a transactivating protein of
24. Perng, G.C., R.L. Thompson, N.M. Sawtell, W.E. Taylor,
Rice, and C.A. Spencer. 1996. Attenuation of DNA-dependent
protein kinase activity and its catalytic subunit by the
herpes simplex virus type 1 transactivator ICP0. J. Virol. 70:
26:279–2690.
type 1 mutant containing a deletion within immediate early
gene 1 is latency-competent in mice. J. Gen. Virol. 70: 2501–
2506.
studies on the herpes simplex virus-specified deoxyripyrimi-
27. Bachiotti, S., M.J. Everleigh, and B. Muriehe. 1986. Identiﬁca-
tion and separation of the two subunits of the herpes sim-
Schaffer, S.K. Weller, and D.M. Coen. 1989. A herpes sim-
plex virus ribonucleotide reductase deletion mutant is defective for productive, acute and reactivatable latent infections of mice and for replication in mouse cells. Virology. 173:276–283.
29. Strelow, L.I., and D.A. Leib. 1995. Role of the virion host
shutoff (vhs) of herpes simplex virus type 1 in latency and pathogenesis. J. Virol. 69:6779–6786.
30. Read, G.S., and N. Frenkel. 1983. Herpes simplex virus mu-
tants defective in the virion-associated shutoff of host
polypeptide synthesis and exhibiting abnormal synthesis of a
host shutoff function of herpes simplex virus type 1 plays a role in
cornal invasion and functions independently of the cell cycle.
Virology. 231:28–34.
32. He, B., J. Chou, D.A. Lieberman, B. Hoffman, and B. R oiz-
man. 1996. The carboxy terminus of murine M yD116 gene
substitutes for the corresponding domain of the g134.5 gene of
herpes simplex virus to preclude the premature shutoff of total
tion of a M r 90,000 phosphoprotein with protein kinase
PKR in cells exhibiting enhanced phosphorylation of transla-
tion initiation factor eIF-2 and premature shutoff of protein
synthesis after infection with g134.5 mutants of herpes sim-
34. Peng, G.C., R.L. Thompson, N.M. Sawtell, W.E. Taylor,
1995. An avirulent ICP34.5 deletion mutant of herpes simplex virus type 1 is capable of in vivo spontaneous
O’Keefe, R.M. Gesser, E.A. MCKie, A.R. MacLean, N.W.
Frazer, and S.M. Brown. 1995. Replication, establishment of
latent infection, expression of the latency-associated transcripts and explant reactivation of herpes simplex virus type 1 gamma
36. Thompson, R.L., and J.G. Stevens. 1983. Biological charac-
terization of a herpes simplex virus intertypic recombinant
which is completely and speciﬁcally non-neuroviral. Vi-

671 Leib et al.

