Inhibition of Caspases Increases the Sensitivity of L929 Cells to Necrosis Mediated by Tumor Necrosis Factor

By Dominique Vercammen, Rudi Beyaert, Geertrui Denecker, Vera Goossens, Geert Van Loo, Wim Declercq, Johan Grooten, Walter Fiers, and Peter Vandenabeele

From the Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, B-9000 Ghent, Belgium

Summary

Murine L929 fibrosarcoma cells treated with tumor necrosis factor (TNF) rapidly die in a necrotic way, due to excessive formation of reactive oxygen intermediates. We investigated the role of caspases in the necrotic cell death pathway. When the cytokine response modifier A (CrmA), a serpin-like caspase inhibitor of viral origin, was stably overexpressed in L929 cells, the latter became 1,000-fold more sensitive to TNF-mediated cell death. In addition, TNF sensitization was also observed when the cells were pretreated with Ac-YVAD-cmk or zDEVD-fmk, which inhibits caspase-1– and caspase-3–like proteases, respectively. zVAD-fmk and zD-fmk, two broad-spectrum inhibitors of caspases, also rendered the cells more sensitive, since the half-maximal dose for TNF-mediated necrosis decreased by a factor of 1,000. The presence of zVAD-fmk also resulted in a more rapid increase of TNF-mediated production of oxygen radicals. zVAD-fmk–dependent sensitization of TNF cytotoxicity could be completely inhibited by the oxygen radical scavenger butylated hydroxyanisole. These results indicate an involvement of caspases in protection against TNF-induced formation of oxygen radicals and necrosis.

Materials and Methods

Cells. L929 murine fibrosarcoma cells and HeLa H21 cervix carcinoma cells were cultured in DMEM supplemented with 5% newborn bovine serum and 5% FCS, penicillin (100 U/ml), streptomycin (0.1 mg/ml), and L-glutamine (0.03%). KYM rhabdomyosarcoma and PC60R55R75 murine T cell hybridoma cells were cultured in RPMI 1640, supplemented with 10% FCS, penicillin (100 U/ml), streptomycin (0.1 mg/ml), and L-glutamine (0.03%), and additionally 2-mercaptoethanol (5 × 10^{-5} M) and sodium pyruvate (1 mM) for PC60R55R75 cells.

Cytokines, Antibodies, and Reagents. Recombinant murine TNF was produced in our laboratory and was purified to at least 99% homogeneity. The specific activity was 1.4 × 10^8 IU/mg, as determined in a standardized cytotoxicity assay on L929 cells. Actinomycin D, butylated hydroxyanisole (BHA), diethylmaleate (DEM), H$_2$O$_2$, and tert-butyl hydroperoxide (tBuOOH) were purchased from Sigma Chemical Co. (St. Louis, MO). Monochlorobimane was supplied by Molecular Probes (Eugene, OR). Dihydrorhodamine 123 (DHR123; Molecular Probes) was prepared as a 5 mM stock solution in DMSO and was used at 1 mM. Propidium iodide (PI; Becton Dickinson, San Jose, CA) was dissolved at 3 mM in PBS and was used at 30 μM.

Abbreviations used in this paper: BHA, butylated hydroxyanisole; CrmA, cytokine response modifier A; DD, death domain; DEM, diethylmaleate; DHR123, dihydrorhodamine 123; NF, nuclear factor; PI, propidium iodide; tBuOOH, tert-butyl hydroperoxide.
The caspase peptide inhibitors zDEVD-fmk, zVAD-fmk, and zD-fmk were purchased from Enzyme Systems Products (Dublin, CA). Ac-YVAD-cmk and zAAD-cmk were supplied by Calbiochem-Novabiochem International (San Diego, CA). Anti-cytokine response modifier A (CrmA) antibodies were provided by D. Pickup (Durham, NC).

Plasmids. Cowpox CrmA cDNA (a gift from D. Pickup, Durham, NC) was inserted as an EcoRI fragment into the EcoRI site of pCAGGS (16). pSV2neo, which contains the neomycin-resistant gene under control of the SV40 early promoter, was used as a selection marker (17).

Cytotoxicity assay. Cells were seeded on day 1 at 2 × 10^4 cells/well in a 96-well plate. The next day, inhibitors and TNF were added at the given concentrations. Typically, the cells were incubated with TNF or H_2O_2 for 18 h, and cell viability was assessed using staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide as previously described (18). The percentage of cell survival was calculated as follows: (A_595/655 treated cells - A_595/655 medium)/(A_595/655 untreated cells - A_595/655 medium) x 100.

Measurement of Oxygen Radical Formation and Cell Death by Flow Cytometry. DHR 123 was added at the same time as TNF to suspension cultures, obtained by seeding cells in uncoated 24-well tissue culture plates (Sarstedt, Newton, NC). Cell samples were taken at different time points and analyzed on a FACScalibur flow cytometer equipped with a 488-nm argon ion laser. PI fluorescence was detected at 610 nm and served as a measure for cell death. Rhodamine 123 fluorescence, as a result of DHR123 oxidation, was analyzed on PI-negative cells and detected at 525 nm. Relative rhodamine 123 fluorescence is defined as the ratio between emitted fluorescence at a given time point and initial fluorescence for the same condition.

Quantitation of Free Thiol Groups in Cell Lysates. Cytosolic cell extracts were prepared by lysing the cells in a buffer containing 1% Nonidet P-40, 200 mM NaCl, 20 mM Tris/HCl, pH 7.4, 10 μM/ml leupeptin, aprotinin (0.27 trypsin inhibitory U/ml), and 100 μM PM SF. Caspase-1- or caspase-3-like activities were determined by incubation of cell lysate (containing 25 μg total protein) with 50 μM of the fluorescent substrates Ac-YVAD-AMC or Ac-DEVD-AMC (Peptide Institute, Osaka, Japan), respectively, in 200 μl cell-free system buffer, comprising 10 mM Hepes, pH 7.4, 220 mM mannitol, 68 mM sucrose, 2 mM NaCl, 2.5 mM KH_2PO_4, 0.5 mM EGTA, 2 mM MgCl_2, 5 mM pyruvate, 0.1 mM PM SF, and 1 mM dithiothreitol (12). The release of fluorescent 7-amino-4-methylcoumarin was measured for 1 h at 2 min intervals by spectrophotometry; data are expressed as the increase in fluorescence as a function of time.

Measurement of Nuclear Factor (NF)-κB Activity. L929 cells carried a reporter construct consisting of a luciferase gene under control of the minimal chicken conalbumin promoter preceded by three NF-κB sites (20). Cells were seeded on day 1 at 2 × 10^4/well. The next day, cells were pretreated with different caspase inhibitors for 2 h and stimulated with TNF. After 3 h of incubation, cells were lysed according to the luciferase assay protocol of Promega Biotec (Madison, WI); luciferin (Duchefa Biochemie, Haarlem, The Netherlands) was added and luciferase activity was measured on a Topcount Luminometer (Packard Instrument Co., Meriden, CT).

Results

Overexpression of CrmA renders L929 cells more sensitive to TNF-mediated necrosis. L929 cells were cotransfected with cDNA encoding CrmA from cowpox virus and a pSV2neo selection plasmid. Individual neomycin-resistant clones were screened for CrmA expression by Western analysis and tested for their sensitivity to TNF-mediated necrosis (Fig. 1). Cells expressing CrmA were up to 1,000 times more sensitive to TNF as compared to mock-transfected cells (LD₅₀ of ~0.05 IU/ml, as compared to ~50 IU/ml for control clones). These results suggest a protective role for CrmA-sensitive caspases against TNF-induced production of oxygen radicals.

![Figure 1. CrmA expression enhances TNF-induced necrosis.](https://example.com/figure1.png)
Blocking of Caspases by Oligopeptide Inhibitors Sensitizes L929 Cells to TNF-mediated Necrosis. L929 cells were pre-treated for 2 h with various caspase inhibitors, and their sensitivity to TNF was analyzed. When the cells were pre-treated with Ac-YVAD-cmk or zDEVD-fmk (100 μM), which are tetrapeptide inhibitors of caspase-1 and caspase-3 subfamily members, respectively, they became significantly more sensitive to TNF-mediated cell death (with LD$_{50}$ of 1 IU/ml as compared to 30 IU/ml for controls; Fig. 2A). When Ac-YVAD-cmk and zDEVD-fmk were combined, no additional sensitization was observed, suggesting that they act on the same pathway. Two more broad-range caspase-blocking agents are zVAD-fmk and zD-fmk. When these inhibitors were added before TNF stimulation at a concentration of 25 μM, they drastically sensitized the cells to TNF (LD$_{50}$ of 0.02 IU/ml). In contrast, zAAD-cmk, an

Figure 2. Sensitizing effect of peptide caspase inhibitors on TNF-induced necrosis in L929 cells, added 2 h before TNF treatment. (A) Without addition of BHA. ●, Ac-YVAD-cmk (100 μM); ○, zDEVD-fmk (100 μM); ▲, Ac-YVAD-cmk + zDEVD-fmk (100 μM each); ▼, zVAD-fmk (25 μM); ●, zD-fmk (25 μM); □, zAAD-cmk (100 μM); and ◆, control. (B) With BHA (100 μM) added at the same time as TNF (same symbols as in A).

Figure 3. Effect of zVAD-fmk on TNF-induced reactive oxygen formation and cell death. (A) Effect on TNF-induced oxygen radical production (relative DHR123 fluorescence as compared to untreated cells). ●, TNF alone (500 IU/ml); ○, TNF + BHA (100 μM); ▲, TNF + zVAD-fmk (25 μM); ▼, TNF + zVAD-fmk + BHA; and ■, zVAD-fmk alone. (B) Effect on TNF-induced cell killing determined on the basis of PI-negative cells (same experiment and symbols as in A).
inhibitor of granzyme B, did not alter TNF sensitivity, excluding nonspecific effects. Taken together, it is evident that members of the caspase family are responsible for protection against TNF-induced necrosis in L929 cells. Presumably additional caspases besides caspase-1 or caspase-3 are involved in this protective effect, as suggested by the weak sensitization by Ac-YVAD-cmk and zDEVD-fmk, compared to the strong effect of zVAD-fmk and zD-fmk.

Sensitization of TNF-induced Necrosis by Peptide Caspase Inhibitors Is Abrogated by BHA. Death of L929 cells after incubation with TNF follows excessive production of oxygen radicals in the mitochondria, and scavenging of these radicals by some antioxidants, such as BHA, protects the cells (5). When the effect of peptide caspase inhibitors on TNF-induced necrosis of L929 cells was analyzed in the presence of BHA, their sensitizing effect was completely abrogated in the case of zDEVD-fmk or Ac-YVAD-cmk, and to a great extent, when zVAD-fmk or zD-fmk were used (Fig. 2 B). This indicates that sensitization by caspase inhibitors enhances oxygen radical-dependent cytotoxicity.

Enhanced Cytotoxicity in the Presence of zVAD-fmk Is Correlated with Increased Oxygen Radical Accumulation. Oxygen radical accumulation was fluorimetrically measured using DHR 123 oxidation as a specific marker. Since rhodamine 123 fluorescence was measured in cells with intact membranes (PI-negative), the influence of PI fluorescence could be ruled out. As shown in Fig. 3 A, incubation of L929 cells with TNF resulted in a small but significant increase of oxygen radicals, which could be blocked by BHA. However, when the cells were pretreated with zVAD-fmk, oxygen radical levels raised up to 10-fold after 6 h of treatment with TNF. Again, BHA (100 μM) could strongly inhibit this radical accumulation. zVAD-fmk alone had no effect on radical production after 6 h. Fig. 3 B shows cell killing of the same samples, as measured by PI uptake due to loss of cell membrane integrity, demonstrating the correlation between oxygen radical accumulation and cell death.

Increased Oxygen Radical Accumulation After TNF + zVAD Treatment Is the Result of Higher Radical Production Rather than an Impaired Scavenging System. In the case of TNF-mediated radical production in L929 cells, it was previously shown that excess radicals are scavenged by the mitochondrial glutathione system (5). As the increased levels of oxygen radicals after TNF + zVAD-fmk treatment may result either from an enhanced production of radicals or an impaired mitochondrial glutathione system, we analyzed cellular thiol concentrations using monochlorobimane fluorescence after treatment with zVAD-fmk in the presence or absence of TNF. However, no significant decrease in fluorescence could be observed (Fig. 4 A). This suggests that the sensitizing effect of zVAD-fmk on TNF-mediated oxygen radical production is not the result of depleted thiol pools, such as mitochondrial glutathione.

Therefore, we tested whether zVAD-fmk had any effect on the accumulation of radicals induced by the addition of exogenous H$_2$O$_2$ or tBuOOH, which cause lipid peroxidation in the cells. As shown in Fig. 4 B, zVAD-fmk did not alter radical accumulation. Again, this indicates that the signaling pathway to radical formation, rather than the scavenging capacity of the cells, is affected by caspase inhibition.

TNF Treatment Does Not Result in Detectable Caspase Activity in L929 Cells. To study whether caspase activity oc-

Figure 4. Effect of zVAD-fmk on radical scavenging in L929 cells. (A) zVAD-fmk does not alter free thiol concentrations. Cells were treated with zVAD-fmk (25 μM) for 4 h [zVAD-fmk (-4)] or 2 h [zVAD-fmk (-2)] before TNF addition, or with DEM 3 h after TNF addition. Open bars, without TNF; filled bars, 1,000 IU/ml TNF. (B) Effect of zVAD-fmk on H$_2$O$_2$- or tBuOOH-induced oxygen radical production (relative DHR123 fluorescence as compared to untreated cells). ●, H$_2$O$_2$ (50 μM); ○, H$_2$O$_2$ + zVAD-fmk (25 μM); ▭, tBuOOH (100 μM); ▪, tBuOOH + zVAD-fmk; and ■, zVAD-fmk alone.
curs after TNF treatment of L929 cells, lysates were prepared after several incubation periods. Caspase-3- and caspase-1–like activities were determined with the substrates Ac-DEVD-AMC and Ac-YVAD-AMC, respectively. As shown in Table 1, no significant 7-amino-4-methylcoumarin release was detected in L929 lysates. PC60R55R75 cells, which die in an apoptotic mode after TNF treatment (21), were used as a control. After 4 h, DEVD cleavage activity began to appear, peaking at \(\sim 6 \) h. These results suggest that caspase activity is correlated with apoptotic and not with necrotic cell death. Furthermore, the sensitization by caspase inhibitors apparently is due to inhibition of low, constitutive levels of caspas.

Table 1. Activation of Caspase-1– and Caspase-3–like Proteases in L929 and PC60R55R75 Cells

<table>
<thead>
<tr>
<th>TNF treatment (10,000 IU/ml)</th>
<th>L929 cells</th>
<th>PC60R55R75</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>Ac-YVAD-AMC</td>
<td>Ac-DEVD-AMC</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

Values given are maximal fluorescence releases (arbitrary U/min) measured during a 1-h incubation period with the substrates indicated. * Decrease due to cell death.

Discussion

In this study, we investigated the role of caspases in TNF-mediated necrosis. First, we used the cowpox CrmA gene product as an inhibitor of a number of caspases. Surprisingly, expression of CrmA in L929 cells rendered them

![Figure 5. Inhibitory effect of zVAD-fmk on TNF-mediated apoptosis in HeLa H21 cells (● and ○; 1 µg/ml actinomycin D added) and KYM cells (▼ and ▲). Open symbols, TNF only; closed symbols, 25 µM zVAD-fmk added 2 h before TNF treatment.](image)
far more sensitive to TNF as compared to control cells not expressing CrmA. Furthermore, blocking of caspases by peptide inhibitors sensitized the cells to TNF-induced cytotoxicity. zDEVD-fmk and Ac-YVAD-cmk have a different specificity pattern, and when they were combined, they could not synergize with each other, suggesting the possibility that they inhibit consecutively acting caspases. TNF sensitization induced by zVAD-fmk and zD-fmk strongly potentiated TNF-mediated necrosis. In the latter case, the concentration of TNF required for half-maximal cytotoxicity decreased 1,000-fold. zDEVD-fmk and Ac-YVAD-cmk are not the reason for fully active TNF signaling to necrosis (26). In this study, we show that neither zVAD-fmk, zDEVD-fmk, nor CrmA block TNF signaling to necrosis, but, on the contrary, considerably enhance cytotoxicity. Obviously, TNF-mediated necrosis in L929 cells is not dependent on caspase-8/caspase-10, but in fact is attenuated by one or more caspases.

Our results suggest a new role for caspases as negative regulators of TNF-induced oxygen radical production and consequent necrosis. As shown previously, TNF-induced radical formation in L929 cells depends on an intact electron transport system in the mitochondria, and probably involves \(\text{O}_2^- \), \(\text{H}_2\text{O}_2 \), and/or lipid hydroperoxides (5). Although evidence for the existence of mitochondrial caspases has recently been reported (31, 32), a role for caspases in the electron transport system has not yet been demonstrated. However, since CrmA is probably located in the cytosol, it is unlikely that mitochondrial caspases are involved. Rather, it seems that one or more caspases interfere with the signal from the triggered receptor to the mitochondria. Alternatively, the production of oxygen radicals...
may be counteracted by caspases at the level of the mito-
chondria themselves (Fig. 6).
A third hypothetical model is the following. Degradation
of mitochondrial proteins has been documented both in
physiological and pathological conditions (33). This is espe-
cially the case when membrane proteins are damaged by
oxygen radicals. In mitochondria of rat liver cells, increas-
ing the radical production results in enhanced protease ac-
tivity (34). In addition, oxidative damage to intracellular
proteins increases their susceptibility to proteolysis (35).
Although it is known that in some of these turnover pro-
cesses, mitochondrial and/or cytosolic ATP-dependent
protease complexes play an important role, there is also evi-
dence for involvement of ATP-independent proteases in
mitochondrial catabolism. Possibly, caspases could be key
elements in such an intracellular mitochondrial quality con-
trol system. As cells increase their production of oxygen
radicals in the mitochondria after p55 TNF receptor stimu-
lation, oxidative damage of lipids and proteins accumulates;
this results in occasional failure of the electron transport
system, which leads to an amplified radical production. It is
conceivable that such defective mitochondria are recog-
nized and eliminated by a specific cellular mechanism, and
this is where caspases could play a role. Elimination of such
deficient but oxygen radical–producing mitochondria should
then be beneficial for the cell to survive the deadly TNF
signal. By inhibiting cytosolic caspase activity, this “rescue
mechanism” would be impaired, and hence the cells would
accumulate excessive reactive oxygen–producing mito-
chondria and would be far more sensitive to TNF–induced
necrosis. Whatever the exact mechanism is, a low activity
of caspases is implied, stressing the importance of a strin-
gent control mechanism of caspase activity in healthy cells.

Fig. 6 illustrates alternative mechanisms for possible inter-
fERENCE by caspases in TNF-induced mitochondrial pro-
duction of reactive oxygen intermediates.

The results reported here prompt us to add a cautionary
note. Indeed, caspases have already been shown to be es-
sential mediators in illness-related cell death, such as neu-
ronal damage following hypoxic-ischemic insult (36) or
fulminant liver destruction after anti-Fas injection (37), and
evidence exists for the implication of caspases in amy-
rophic lateral sclerosis (38) and Alzheimer’s disease (39).
In the first two indications, inhibition of caspases by tripeptide
derivatives protects treated mice against injury and death.
However, considering the 1,000-fold sensitization of TNF–
induced necrotic cell death by inhibitors of caspases, one
should be cautious in cases where reactive oxygen–medi-
ated necrosis may be involved, such as neutrophil-induced
endothelial cell necrosis in the systemic inflammatory re-
sponse syndrome (40); liver necrosis after reperfusion, alco-
holic liver disease, or hemochromatosis (iron overload) and
Wilson’s disease (copper overload) (41); and myocardial is-
chemia and reperfusion injury (42). It is not excluded that
in these indications, administration of caspase inhibitors
may rather have an adverse effect. Therefore, the mecha-
nism leading to cell death should be taken into account
when the use of caspase inhibitors would be considered as
disease treatment.

T he authors thank W. Burm, A. Meeus, and M. Van den Hemel for technical assistance. They are indebted
to Dr. D. Pickup for donating CrmA cDNA and antiserum.

R esearch was supported by the Interuniversitaire Attractiepelen and the Fonds voor Geneeskundig Weten-
schappelijk Onderzoek, as well as by a European Community Biomed Program grant BMH4-CT 96-0300.
R. Beyaert is a postdoctoral researcher, G. Denecker a research assistant, and P. Vandenabeele a postdoctoral
researcher with the Fonds voor Wetenschappelijk Onderzoek–Vlaanderen. G. Van Loo is a fellow with the
Vlaams Instituut voor de Bevordering van het Wetenschappelijk Technologisch Onderzoek in de Industrie.

Address correspondence to P. Vandenabeele, Laboratory of Molecular Biology, K.L. Ledeganckstraat 35,
B-9000 Ghent, Belgium. Phone: 32-9-264-51-31; Fax: 32-9-264-53-48; E-mail: petervda@imbi.rug.ac.be

R eceived for publication 8 December 1997 and in revised form 4 February 1998.

R eferences

1. Vassalli, P. 1992. The pathophysiology of tumor necrosis fac-
2. Fiers, W. 1995. Biologic therapy with TNF: preclinical stud-
ies. In Biologic Therapy of Cancer. 2nd ed. V.T. DeVita, Jr.,
S. Hellman, and S.A. Rosenberg, editors. J.B. Lippincott,
Philadelphia. 295–327.
3. Wallach, D., M. Boldin, E. Varfolomeev, R. Beyaert, P.
receptors of the TNF family: towards a molecular under-
1993. Cell membrane permeabilization and cellular collapse,
followed by loss of dehydrogenase activity: early events in tu-
Direct evidence for tumor necrosis factor–induced mito-
chondrial reactive oxygen intermediates and their involve-
ment in cytotoxicity. Proc Natl Acad Sci USA. 92:8115–
8119.
36. Friedlander, R.M., R.H. Brown, V. Gagliardini, J. Wang, S. Matsuura, and fully

