Heat Shock Protein–Peptide Complexes, Reconstituted In Vitro, Elicit Peptide-specific Cytotoxic T Lymphocyte Response and Tumor Immunity

From the Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, Connecticut 06030

Summary

Heat shock protein (HSP) preparations derived from cancer cells and virus-infected cells have been shown previously to elicit cancer-specific or virus-specific immunity. The immunogenicity of HSP preparations has been attributed to peptides associated with the HSPs. The studies reported here demonstrate that immunogenic HSP–peptide complexes can also be reconstituted in vitro. The studies show that (a) complexes of hsp70 or gp96 HSP molecules with a variety of synthetic peptides can be generated in vitro; (b) the binding of HSPs with peptides is specific in that a number of other proteins tested do not bind synthetic peptides under the conditions in which gp96 molecules do; (c) HSP–peptide complexes reconstituted in vitro are immunologically active, as tested by their ability to elicit antitumor immunity and specific CD8+ cytolytic T lymphocyte response; and (d) synthetic peptides reconstituted in vitro with gp96 are capable of being taken up and re-presented by macrophage in the same manner as gp96–peptides complexes generated in vivo. These observations demonstrate that HSPs are CD8+ T cell response–eliciting adjuvants.

Immunization with heat shock protein (HSP) preparations isolated from cancer cells or virus-infected cells has been reported to elicit protective antitumor or antiviral cellular immune response (1–8). This paradigm has also been substantiated in other antigenic systems, such that gp96 HSP preparations isolated from a cell expressing a transfected cytosolic protein can immunize and elicit specific CTls against that antigen (9). Similarly, gp96 preparations isolated from cells expressing a given set of minor H antigens can be used to immunize and elicit CTL response against the minor antigens expressed by the cells that were the source of the immunizing gp96 preparation (9). HSPs are not polymorphic molecules and do not differ in their primary structure among normal tissues and cancers, or among normal and virus-infected cells. In this light, the remarkably general immunizing ability of HSP preparations has been explained on the basis of the suggestion that the HSP molecules are associated with peptides generated in the cells from which the HSPs are isolated (10). Peptides associated with gp96 and hsp70 have since been demonstrated (6, 11) and it has been shown that dissociation of the HSP-bound peptides leads to abrogation of immunogenicity of the HSP preparation (6). Confirmation of these results has also been obtained in a viral system, as a recent study has demonstrated that gp96 preparations isolated from vesicular stomatitis virus (VSV)-infected cells contain VSV-derived peptides (12). It has been suggested that cytosolic and endoplasmic reticular HSPs chaperone antigenic peptides during antigen processing and presentation by MHC class I molecules (13). The mechanism by which such noncovalent HSP–peptide complexes elicit protective cellular immune responses has recently been elucidated (14, 15).

The HSP–peptide interaction is at the center of this newly emerging immunological paradigm. In this report, we demonstrate that HSP–peptide complexes can also be generated in vitro and that the biological activity of these complexes is comparable to that of HSP–peptide complexes generated in vivo. Further, the HSP–peptide complexes reconstituted in vitro elicit immunity by a mechanism apparently identical to that implicated in the immunogenicity of the complexes generated in vivo.

Materials and Methods

Mice and Cell Lines. Female C57BL/6 (6–8 wk old) were purchased from The Jackson Laboratory (Bar Harbor, ME). EL4 cells are a thymoma of C57BL/6 origin. N1 is a clone of EL4 trans-
Hsp70 was purified as described by Peng et al. (17). Hsp70 was equilibrated with 0.3 M NaCl, and was eluted with 0.7 M NaCl, 2 mM MgCl₂, and high mannose. The eluate was applied to a DEAE–agarose column, equilibrated with 0.3 M NaCl, and was eluted with 0.7 M NaCl. Hsp70 was purified as described by Peng et al. (17).

Purification of HSPs. gp96 was purified from C57BL/6 liver cells, as described (2). In brief, 15 liters were homogenized in 40 ml of hypotonic buffer (30 mM NaHCO₃, 0.1 mM phenylmethylsulfonyl fluoride, pH 7.1) by a tissue tearor, and a 100,000 g supernatant was obtained. The supernatant was fractionated by 50–70% ammonium sulfate precipitation, applied to a concanavalin A–agarose column, and eluted with 0.1 M α-methylmannoside. The eluate was applied to a DEAE–agarose column, equilibrated with 0.3 M NaCl, and was eluted with 0.7 M NaCl. Hsp70 was purified as described by Peng et al. (17).

Heat Shock Proteins as CTL-eliciting Adjuvants of Mammalian Origin

HSP–Peptide Binding. gp96 and ¹²⁵I-labeled peptides (synthesized by Bio-Synthesis, Inc., Lewisville, TX), were mixed in the quantities indicated, and incubated for 10 min at the indicated temperatures in a binding buffer (20 mM Hepes, pH 7.2, 20 mM NaCl, and 2 mM MgCl₂). The samples were then incubated for 30 min at room temperature. Alternatively, gp96 and peptides were incubated in sodium phosphate buffer at 25 or 50°C, as indicated, for 10 min at various salt concentrations, followed by incubation at room temperature for 30 min. In the case of hsp70, high temperatures and high salt concentrations were unnecessary; hsp70 and peptides were coincubated at 37°C in sodium phosphate buffer containing 1 mM ADP and 1 mM MgCl₂. Free peptide was removed completely using a microcon 50 (Amicon, Inc., Beverly, MA). The removal of free peptides was monitored by electrophoretic analysis of the labeling mixture, followed by autoradiography. Nonspecifically added labeled peptide A could associate with gp96 after incubation of gp96 with exogenous peptides at higher temperatures. However, no binding of gp96 to peptide A is detected under these conditions. The possibility was considered that incubation of gp96 with exogenous peptides at higher temperatures might permit dissociation of naturally bound peptides followed by reannealing of a proportion of exogenously added radiolabeled peptides at lower temperatures. Nonspecifically added radiolabeled peptides were incubated with unlabeled gp96 at 4, 25, 37, 60, or 90°C for 10 min and allowed to cool to room temperature for an additional 30 min. The samples were analyzed by SDS-PAGE without further heating and the gels were stained for proteins and autoradiographed. It was observed (Fig. 1) that exogenously added labeled peptide A could associate with gp96 in a temperature-dependent manner with optimal binding at 60°C. Little binding is detected at 4, 25, 37, or 90°C. Although the intensity of label in the gp96 band varies at different temperatures and at different peptide concentrations (Fig. 1, A and B), the quantity of gp96 as detected by silver staining is constant in all lanes (Fig. 1 C). It was also observed that the gp96–peptide binding can be dissociated, if the complexes are heated in a boiling water bath (data not shown).

The exchange of exogenous and native-bound peptides could also be achieved by incubation of gp96 with exogenous peptides at high salt concentrations. Gp96 preparations were incubated at 25 or 50°C with radioiodinated peptide VSV19 (extended on both termini of K₉₆-binding VSV nucleocapsid protein (NP)-derived octamer VSV8) for 10 min in sodium phosphate buffer containing 200 mM, 300 mM, 500 mM, 700 mM, 800 mM, 1 M, 2 M, or 3 M NaCl, followed by 30 min at room temperature. The samples were desalted and analyzed by SDS-PAGE, followed by staining as well as autoradiography. It was observed (Fig. 2) that significant quantities of labeled peptides formed an SDS-resistant binding of unlabeled gp96 to labeled peptide will result in a labeled 96-kD band. However, no binding of gp96 to peptide A is detected under these conditions. The possibility was considered that incubation of gp96 with exogenous peptides at higher temperatures might permit dissociation of naturally bound peptides followed by reannealing of a proportion of exogenously added radiolabeled peptides at lower temperatures. Nonspecifically added radiolabeled peptides were incubated with unlabeled gp96 at 4, 25, 37, 60, or 90°C for 10 min and allowed to cool to room temperature for an additional 30 min. The samples were analyzed by SDS-PAGE without further heating and the gels were stained for proteins and autoradiographed. It was observed (Fig. 1) that exogenously added labeled peptide A could associate with gp96 in a temperature-dependent manner with optimal binding at 60°C. Little binding is detected at 4, 25, 37, or 90°C. Although the intensity of label in the gp96 band varies at different temperatures and at different peptide concentrations (Fig. 1, A and B), the quantity of gp96 as detected by silver staining is constant in all lanes (Fig. 1 C). It was also observed that the gp96–peptide binding can be dissociated, if the complexes are heated in a boiling water bath (data not shown).

The exchange of exogenous and native-bound peptides could also be achieved by incubation of gp96 with exogenous peptides at high salt concentrations. Gp96 preparations were incubated at 25 or 50°C with radioiodinated peptide VSV19 (extended on both termini of K₉₆-binding VSV nucleocapsid protein (NP)-derived octamer VSV8) for 10 min in sodium phosphate buffer containing 200 mM, 300 mM, 500 mM, 700 mM, 800 mM, 1 M, 2 M, or 3 M NaCl, followed by 30 min at room temperature. The samples were desalted and analyzed by SDS-PAGE, followed by staining as well as autoradiography. It was observed (Fig. 2) that significant quantities of labeled peptides formed an SDS-resistant association with gp96 after incubation at 2 M or higher NaCl concentration, but not at lower concentrations. In presence of high salt, the extent of...
association of gp96 with peptides was comparable at the low and high temperatures, whereas at low salt concentrations, gp96–peptide interaction was detected only at the higher temperature. The quantity of gp96 in each lane, as judged by Coomassie blue staining and scanning, was identical.

Reconstitution of peptides with hsp70 molecules was observed to require neither a heating and cooling cycle, nor exposure to high salt concentrations. Incubation of apparently homogeneous preparations of hsp70 with radiolabeled peptide A in sodium phosphate buffer containing 1 mM ADP and 1 mM MgCl₂ at 37°C was found to be sufficient to generate SDS-stable hsp70–peptide complexes as judged by autoradiography (see Fig. 5 A).

Binding of gp96 or hsp70 to peptides is not restricted to peptide A and can also be demonstrated for an array of other peptides, such as peptide B, LSSLFRPKRRPIYKS (derived from VSV G protein; reference 18); peptide C, SLSLDRGYVYQGLKSGNVS (derived from VSV nucleoprotein; reference 18); peptide D, IASNENMETMESSTTLE (derived from nucleoprotein of influenza virus strain A/PR/8/34); and peptide E, SFI1GTKVSPRGKLST (derived from nucleoprotein of influenza virus A/NY/60/68) (data not shown). To evaluate the specificity of binding of peptides to gp96, unlabeled peptides A, B, C, D, and E were tested for their ability to compete with labeled peptide A in the gp96–peptide A binding assay. gp96, 25 pmol radiolabeled peptide A, and 0.1 or 10 nmol unlabeled peptides A, B, C, D, or E were coincubated at 50°C, followed by a 30-min incubation at room temperature. It was observed that all peptides could compete with peptide A in binding to gp96, although with different efficiencies (Fig. 3 A). As expected, higher quantities (10 nmol) of competing unlabeled peptides were more effective in displacing labeled peptide A than the lower quantities in the case of all peptides except peptide E, in which case the competition was already saturating at the lower quantity.

The specificity of binding of HSPs with the exogenous peptide was demonstrated in the following additional ways, as shown here for gp96, but also observed for hsp70. (a) Inclusion of BSA or OVA in gp96–peptide A binding reaction had no influence on gp96–peptide A binding (Fig. 3 B); (b) a number of proteins, i.e., α-2 macroglobulin, β-galactosidase, fructose-6-phosphate kinase, OVA, pyruvate kinase, fumarase, and triosephosphate isomerase were tested for their ability to bind peptide A and were observed to not bind it (Fig. 3 C); and (c) it was demonstrated that only the intact gp96 and not any of its various degradation products could bind peptide A (Fig. 3 C).

The quantity of peptide bound to the HSPs in vitro was determined. The specific radioactivity of the peptides (cpm/mol of peptide) was measured; using this number, the number of moles of peptides bound to a given quantity of gp96 were determined by measuring the cpm in the HSP band after autoradiography, by cutting out the band and counting it in a γ counter. This calculation revealed that under the conditions tested, and assuming a stoichiometry of one peptide per HSP molecule, ~1% of HSP molecules were loaded with the exogenous peptide. The assumption of a 1:1 stoichiometry between HSP and peptides was made on the basis of the recent demonstration of a single peptide-binding pocket in a bacterial hsp70 molecule (19).

Immunogenicity of HSP–peptide Complexes Reconstituted In Vitro. gp96–peptide complexes and hsp70–peptide complexes were incubated with high salt concentrations. gp96 (40 pmol) and iodinated synthetic peptide (2 nM, NH₂–Ser–Leu–Ser–Arg–Leu–Arg–Gly–Tyr–Val–Tyr–Gln–Gly–Leu–Lys–Ser–Gly–Asp–Val–Ser–CO₂H) were mixed in phosphate buffer in 20 μl reaction volume and incubated at 25 or 50°C for 10 min. After centrifugation, the mixtures were incubated at 25°C for another 30 min. Samples were analyzed by SDS-PAGE and staining, followed by autoradiography of the stained gel (24-h exposure).
complexes generated in vitro were tested in a variety of models for their ability to elicit CTLs and tumor immunity. For generation of CTLs, seven model peptides, which bind to different MHC class I alleles, were tested. These derive from OVA (Kb), SV40 T antigen (Db), NP antigen of influenza virus (Db and Kb), NP antigen of VSV (Kd), and \(\beta\text{-galactosidase}\). The peptides were complexed with gp96, hsp70, or both and mice of the appropriate haplotype (b or d) were immunized twice at weekly intervals, with the peptides alone (10 \(\mu g\) peptide in PBS), the uncomplexed HSPs alone (20–50 \(\mu g\) HSP in PBS), or the HSP–peptide complexes (20–50 \(\mu g\) HSP complexed with \(\sim 2 ng\) peptide, determined as described in the previous section). Spleen cells from the immunized mice were put in culture and were stimulated with the cognate peptide and tested for cytotoxic activity on target cells pulsed or unpulsed with relevant peptides. It was observed (Fig. 4) that T cells obtained from mice immunized with peptides alone or with gp96 or hsp70 alone showed no cytotoxic activity, whereas T cells obtained from mice immunized with HSP–peptide complexes showed significant and consistent peptide-specific CTL activity. The precise MHC class I–bind-
reconstituted in vitro, survived beyond 100 d after tumor challenge. Spleens of the immunized mice were also tested for antigen-specific CTL response to the VSV8 epitope. It was observed that mice immunized with the gp96–VSV8 complex generated effective antigen-specific, CD8+ CTL response, whereas mice immunized with gp96 alone, or the VSV8 alone, did not (data not shown). These results indicate that the peptides complexed with gp96 in vitro elicit tumor immunity in a manner consistent with the gp96–peptide complexes generated in vivo. Similar antitumor activity has been shown for hsp70–peptide complexes generated in vivo. Similar antitumor activity has been shown for hsp70–peptide complexes generated in vivo. Similar antitumor activity has been shown for hsp70–peptide complexes generated in vivo. Similar antitumor activity has been shown for hsp70–peptide complexes generated in vivo. Similar antitumor activity has been shown for hsp70–peptide complexes generated in vivo.

Re-presentation of Peptides Reconstituted with gp96 In Vitro, by MHC Class I Molecules of Macrophages.

The mechanism whereby immunization with gp96–peptide complexes generated in vivo leads to protective CTL response has been elucidated (15). It has been shown that gp96–peptide complexes are taken up by macrophages and the chaperoned peptides are re-presented by the MHC class I molecules of the macrophage through a novel pathway. The immunological activity of the gp96–peptide complexes generated in vitro was tested in this assay. gp96 preparations were reconstituted with the VSV8 peptide at different temperatures and the resulting complexes were used to pulse pristane-induced macrophages of C57BL/6 mice in vitro. The pulsed macrophages were tested for their ability to stimulate anti-VSV CTLs, as measured by the secretion of TNF-α by the CTLs (Fig. 7). It was observed that the macrophage pulsed with complexes reconstituted at 60°C were effective in this re-presentation assay, whereas those reconstituted at 37, 80, or 98°C were not. As we have shown previously (15), the quantity of VSV8 complexed with gp96 in these experiments is ~2 log scales lower than that necessary for direct charging of the empty surface MHC class I molecules by the VSV8 peptides. Data in Fig. 7 show that the gp96–peptide complexes reconstituted in vitro appear to be re-presented by the antigen-presenting cells in the same manner as shown previously (15) for the natural HSP–peptide complexes.

Discussion

The studies described here indicate that HSP–peptide complexes can be reconstituted in vitro and that, by all parame-
ters tested, such complexes show immunological activity similar to the HSP–peptide complexes generated in vivo. The results also show significant differences between gp96 and hsp70 with respect to the conditions in vitro, under which they bind peptides. These differences presumably reflect the fact that although hsp70–ATP interaction plays a crucial role in hsp70–peptide interaction in vivo, the identity of the corresponding ligand for gp96 is presently unknown. In contrast with the situation with hsp70, gp96–ATP interaction does not strip gp96 of its associated peptides (data not shown), even though gp96, like hsp70, is an ATP-binding protein and is an ATPase (11). Exposure to high temperature and high salt apparently causes the gp96 molecule to assume an open conformation, which permits dissociation from and association with exogenous peptides. The identity of the ligands that catalyze this process in vivo would be of interest in this regard.

The observations reported here have several implications. First, they support the hypothesis that immunogenicity of tumor-derived gp96 preparations results from a physical association of gp96 with antigenic peptides. The HSP–peptide complex elicits immunity under conditions in which the HSP molecules alone, or the peptides alone, do not. Second, these observations show that one does not have to rely on HSP–peptide complexes generated in vivo to elicit immunity; instead, such complexes can be generated reproducibly in vitro, provided the identity of the immunogenic peptides is known. A variety of peptides of different lengths, compositions, and hydrophobicity can bind the HSPs, suggesting that the nature of an epitope is not a limiting factor in its suitability as a vaccine in the form of a HSP–peptide complex. The ability of the gp96 to bind peptides in vitro has also been independently demonstrated recently (20).

The quantity of peptide that is required to be conjugated to the HSPs is extremely small and 1–2 ng of peptides complexed to the HSPs elicit potent cellular immune response. At first sight, this quantity may appear to be unrealistically small; however, when it is considered that the peptides chaperoned by the HSPs are targeted specifically to the professional antigen-presenting cells (15, 21), 1–2 ng or ~6

Figure 5. Chaperoning of peptides by HSPs is required for generation of an effective CD8+ T cell response. gp96, hsp70, or mouse serum albumin (MSA) were complexed with radiolabeled VSV9 and analyzed by (A) SDS-PAGE followed by Coomassie blue staining and autoradiography. In addition, mice were immunized (B) with peptides complexed or simply mixed with each of the proteins. Splenocytes of these mice were tested for induction of CD8+ T lymphocytes, as described in legend to Fig. 4. N1 (closed circle) and EL4 (open circle) were used as targets.

Published October 20, 1997
1011 molecules of specific peptide targeted to the relevant antigen-presenting cells are actually a large number, as argued in more detail elsewhere (22). This observation has significant implications for vaccination against infectious diseases in which the protective epitopes are known, and for any cancers, such as those of viral etiology, that may share antigenic epitopes.

Essentially, these results show that HSPs are adjuvants. This adjuvanticity has a number of unique characteristics: in contrast with other nonlive adjuvants, the adjuvanticity of HSPs generates MHC class I–restricted T cell responses. No serological antipeptide response has ever been detected among the tens of immunized mice tested (data not shown). The quantitative requirements of antigens administered with HSPs are log scales lower than corresponding requirements for other adjuvants. Finally, HSPs are the first adjuvants of mammalian origin. We have suggested previously that the immunogenicity of HSP–peptide complexes may reflect the role in vivo of such complexes in priming of cellular immune responses (23). In this view, the observed adjuvanticity of HSPs is simply a reflection of the natural role of HSPs in vivo.

The structural basis of the ability of gp96 molecules to bind a variety of peptides is presently unclear and requires further study. Obviously, there are certain rules for the HSP–peptide interaction as seen in the observation that peptides differ in their ability to compete with a given peptide for binding to gp96 (Fig. 3). However, the studies carried out here are not of a broad enough scope to permit elucidation of these rules. Broadly speaking, HSP–peptide interaction is reminiscent of MHC–peptide interaction, which was equally mysterious as to its structural basis until the rules of interaction were identified (24). The MHC and the HSPs share a number of crucial properties, such as the ability to bind peptides, a ubiquitous tissue distribution, high degree of phylogenetic conservation, inducibility of the respective genes by IFN-γ (25) and, finally, the ability to prime CTL responses against the peptides chaperoned by them. These considerations led us in the past (26) to suggest a phylogenetic relationship between the MHC and the HSPs, and a number of recent observations (19, 27–28) have not been inconsistent with that suggestion. The association of peptides with HSPs of the cytosol (hsp70 and hsp90) and the endoplasmic reticulum (gp96) had also led us to suggest that HSPs constitute a relay line of molecules that chaperones the peptides and ultimately delivers them to the MHC class I molecules (23). Therefore, the HSPs were suggested to be accessories to antigen presentation by MHC class I molecules. Our recent results, which show that peptides precursors to the MHC class I–binding epitopes are found in specific association with hsp70, hsp90, and gp96 (Ishii et al., manuscript submitted for publication), are in accord with our suggestion. The recent demonstration by Lammert et al. (29) that the HSP gp96 acts as a major peptide acceptor for peptides transported into the lumen of the endoplasmic reticulum through transport-associated protein molecules, also supports the relay-line hypothesis.
research agreement with Antigenics, Inc (N ew Y ork, N Y). R. Suto was a postdoctoral fellow of the Cancer Research Institute, New York.

Address correspondence to Pramod K. Srivastava, PhD, Center for Immunotherapy of Cancer and Infectious Diseases University of Connecticut School of Medicine, M C1601, Farimington, CT 06030. Phone: 860-679-4444; FAX : 860-679-4365; E-mail: srivastava@nso2.uchc.edu. The present address of Zhihai Li is Fred Hutchinson Cancer Center, Clinical Research Division, 1124 Columbia, Seattle, WA 98104. The present address of R ajuv Chaudharkar is Department of Surgery, Akron General Medical Center, Akron, OH 44320. The present address of Heinichiro U dono is Department of Parasitology and Immunology, Okayama University School of Medicine, Okayama 700, Japan.

Received for publication 30 June 1997 and in revised form 31 July 1997.

References

