The Importance of Leukotrienes in Airway Inflammation in a Mouse Model of Asthma

From the *Department of Medicine, University of Washington, Seattle, Washington 98195; ‡Department of Pediatrics, University of Washington, Seattle, Washington 98195; and 5 Department of Pathology, University of Washington, Seattle, Washington 98195

Summary

Inhalation of antigen in immunized mice induces an infiltration of eosinophils into the airways and increased bronchial hyperreactivity as are observed in human asthma. We employed a model of late-phase allergic pulmonary inflammation in mice to address the role of leukotrienes (LT) in mediating airway eosinophilia and hyperreactivity to methacholine. Allergen intranasal challenge in OVA-sensitized mice induced LTB4 and LTC4 release into the airspace, widespread mucus occlusion of the airways, leukocytic infiltration of the airway tissue and bronchoalveolar lavage fluid that was predominantly eosinophils, and bronchial hyperreactivity to methacholine. Specific inhibitors of 5-lipoxygenase and 5-lipoxygenase-activating protein (FLAP) blocked airway mucus release and infiltration by eosinophils indicating a key role for leukotrienes in these features of allergic pulmonary inflammation. The role of leukotrienes or eosinophils in mediating airway hyperresponsiveness to aeroallergen could not be established, however, in this murine model.

1Abbreviations used in the paper: alum, aluminum potassium sulfate; BAL, bronchoalveolar lavage; FLAP, 5-lipoxygenase-activating protein; i.n., intranasal; LT, leukotriene; PAS, periodic acid-Schiff.
The selective 5-lipoxygenase inhibitor zileuton (N-[1-benzo[b]thien-2-ylthio]-N-hydroxyurea) (18) was kindly provided by Drs. Randy L. Bell and George W. Carter (Abbott Laboratories, Abbott Park, IL). The selective 5-lipoxygenase-activating protein (FLAP) inhibitor MK-886 (L-663,536; 3-[1-(4-chlorobenzyl)-3-t-butyl-thio-t-isopropyl-indol-2-yl]-2-2-dimethylpropanoic acid) (19, 20) was generously provided by Dr. Anthony Ford-Hutchinson (Merck Frosst Centre for Therapeutic Research, Pointe Claire-Dorval, Quebec, Canada). Zileuton was dissolved in Traspos®; MK-886 was dissolved in dimethyl sulfoxide (DMSO) and then diluted in normal saline, pH 7.0.

Animals. All animal use protocols were approved by the University of Washington Animal Care Committee. Female BALB/c mice (6-8 wk of age at purchase; D and K, Seattle, WA) were housed under conventional conditions for the studies.

Allergen Immunization/Challenge Protocol. Mice received an i.p. injection of 0.2 ml (100 µg) of OVA complexed with alum on days 0 and 14. On days 14, 25, 26, and 27, mice were anesthetized with 0.2 ml i.p. of ketamine (0.44 mg/ml)/xylazine (6.3 mg/ml) in normal saline before receiving an intranasal (i.n.) dose of 100 µg OVA in 0.05 ml normal saline on day 14 and an i.n. dose of 50 µg OVA in 0.05 ml normal saline on days 25, 26, and 27. Two control groups were used. The first group received normal saline with alum i.p. on days 0 and 14 and normal saline without alum i.n. on days 14, 25, 26, and 27. The second group received OVA with alum i.p. on days 0 and 14, OVA without alum i.n. on day 14, and normal saline alone on days 25, 26, and 27.

Leukotriene Inhibitor and LTD4 Studies. To assess the role of 5-lipoxygenase products in airway inflammation, the 5-lipoxygenase inhibitor zileuton (35 mg/kg) or the FLAP inhibitor MK-886 (3 mg/kg) were given i.p. 30 min before each i.n. challenge on days 25, 26, and 27. In one set of animals, zileuton was also given on days 0 and 14 (before i.p. OVA). Zileuton at 35 mg/kg inhibits cysteinyl leukotriene release by ~95% in passively sensitized rats given BSA antigen i.p. (18). MK-886 at 3 mg/kg inhibits LTb4 biosynthesis by 98% in inflamed rat paws given subplantar injection of thioglycollate followed 6 h later by calcium ionophore A23187 treatment (20).

To assess the role of leukotrienes in airway mucus release, non-immunized mice received 0.1 ml i.n. of either LTD4 (2.5 µg in 1% ethanol) or vehicle (1% ethanol). After 60 min, lung tissue was obtained and stained with hematoxylin and eosin as described below.

Pulmonary Function Testing. On day 28, 24 h after the last i.n. administration of either normal saline or OVA, pulmonary mechanics to intravenous infusions of methylcholine were determined in mice in vivo by a plethysmographic method modified from that previously described by Amdur and Mead (21) and Martin et al. (22). After pentobarbital (70-90 mg/kg, i.p.) anesthesia, the mice underwent thoracotomy with wide opening of the thorax, jugular vein cannulation with 8 cm silastic tubing, and tracheal intubation with an angled 18-gauge blunt needle. In one compartment (0.25 ml dead space) of a two chamber whole body plethysmograph, the animal was placed in a supine position and connected to a Harvard ventilator. Normal arterial blood gases were maintained by the following minute ventilation: tidal volume = 0.2 ml/20 gm, frequency 120 breaths/min, positive end-expiratory pressure 2.5-3 cm H2O (23). Constant temperature in the plethysmograph was maintained by a copper mesh heat sink. Since the plethysmograph was a closed system, the change in box pressure (Pbox) of the first chamber (measured by a sensitive transducer [±0.7 cm H2O]) represented the change in lung volume (Δvol = Pbox) of the mouse; Pbox is equivalent to lung pleural pressure. The system was calibrated by syringe delivery of 0.2 ml air at a frequency of ~120/min. Rapid ambient pressure swings (e.g., door openings) in the first chamber were offset by reference of the transducer to the pressure in the second chamber. A microvalve with a time constant ~4.5 s was placed between the two compartments to correct for any temperature increases in the first chamber resulting from the body heat of the animal. A second microvalve with a longer time constant (~11 s) was open to ambient air to keep mean Pbox close to zero. Pressure movements at the opening of the tracheal tube (Ptv) were measured by another transducer, referenced to Pbox to determine transpulmonary pressure (Pp = Ptv - Pbox).

After initial inflation to a Pp of 30-35 cm H2O, the lungs were inflated at least once 1-2 min before each measurement to prevent partial collapse. An analog-to-digital data acquisition system (Strawberry Tree®) was employed to sample Pp and Pbox at 5-ms intervals. The digital Pp data were then offset by 15 ms to bring it into phase with the Pbox signal as determined by making a step change in Pbox with no animal connected to the tracheal cannula. A smoothing function was applied to dampen the background noise in Pbox.

Pc = [X - 1] + 2X + (X + 1) / 4

where X is the flow at a specific time point. The change in volume from point-to-point/5 ms was used to calculate flow.

Data from seven consecutive breaths collected three times during the first 10 min were used to calculate basal pulmonary function. Methacholine was then infused by hand delivery into the jugular vein over 10 s at increasing concentrations (3, 12, 48, 120, and 480 mg/kg) after 10 min of ventilation. Intervals of 1.5-3 min between injections enabled pulmonary function to return to basal levels. Resistance (R), lung conductance (Gl = 1/R), and dynamic compliance (Cdyn) were determined for both the control period and the peak response to each methacholine concentration that was seen during 30 s of monitoring post-injection to bracket the peak response. Tracheal tube resistance (0.63 cm H2O × ml⁻¹ × s⁻¹) was subtracted from all airway resistance measurements. The difference in Pp and air flow at mid-tidal volume on inflation and deflation was used to calculate R. Cdyn was calculated as the change in tidal volume divided by the difference between Pp at end-inspiration and end-expiration when flow is zero (Cdyn = ΔV/ΔPp). At each methacholine concentration, G1 and Cdyn were expressed as the percent of basal value. The methacholine dose which reduced G1 and Cdyn to 75 and 50% of the control values (ED25 and ED50, respectively) was calculated from the log dose-response curves and expressed as the geometric mean ± log SD. At the completion of pulmonary function testing, each mouse was exsanguinated by cardiac puncture.

Bronchoalveolar Lavage. After tying off the left lung at the mainstem bronchus, the right lung was lavaged three times with 0.4 ml of normal saline. Bronchoalveolar lavage (BAL) fluid cells from a 0.05-ml aliquot of the pooled sample were counted using a hemocytometer and the remaining fluid centrifuged at 4°C for 10 min at 200 g. The supernatant was stored at ~70°C until eicosanoid analyses were performed. After resuspension of the cell pellet in normal saline containing 10% BSA, BAL cell smears were made on glass slides. To stain eosinophils, dried slides were stained with Discombe’s diluting fluid (0.05% aqueous eosin and 5% [vol/vol] acetone in distilled water) (24) for 5-8 min, rinsed

1484 Role of Leukotrienes in Allergic Airway Inflammation
with water for 0.5 min, and counterstained with 0.07% methyl-

mouse IgE monoclonal antibody (PharMingen, San Diego, CA)

with OVA (20 mg/ml) diluted in 0.1 M NaHCO3 buffer, pH 8.3

ELISA was employed to determine OVA-specific IgE serum anti-

body titers. ELISA plates (ICN, Costa Mesa, CA) were coated

ELISA was employed to determine OVA-specific IgE serum anti-

body titers. ELISA plates (ICN, Costa Mesa, CA) were coated

Figure 1. 5-Lipoxygenase inhibition blocks leukotriene release in OVA-

immunized/challenged mice. BAL fluid was obtained on day 28 from

sham-sensitized mice receiving i.n. saline challenge (Saline; n = 8), and

OVA-sensitized mice either untreated (OVA; n = 7) or treated (Zileuton/

OVA; n = 7) with the 5-lipoxygenase inhibitor zileuton 30 min before

i.n. OVA challenge on day 25, 26, and 27. The BAL fluid was assayed for

(A) LTB4 and (B) LTC4 as described in Materials and Methods. *p value,

Zileuton/OVA versus OVA.

diluted in 50% goat serum (GIBCO BRL, Gaithersburg, MD)/

PBS buffer for 2 h at room temperature. 3,3',5,5'-tetramethyl-

benzidine substrate was used to develop the wells with absorbance determined at 610 nm. The internal standard in each assay consisted of pooled serum from OVA-immunized BALB/c mice.

Eicosanoid Assays. BAL fluid was assayed for LTB4 and LTC4 in duplicate by RIA (33). LTB4 was assayed using a commercial [3H]LTB4 RIA kit (MEN Research Products, Boston, MA). The detection limit for LTB4 was 12.5 pg/0.1 ml sample. LTC4 was

obtained from Cayman Chemical Co. (Ann Arbor, MI) and

[3H]LTC4 from NEN Research Products (Boston, MA). Rabbit

antiserum against LTC4 (kindly provided by Drs. Robert W. Egan

and John L. Humes, Merck Institute for Therapeutic Research, Rahway, NJ) had the following cross-reactivities at B/Bo 50%: (5S, 6R)-LTC4, 100%; LTD4, 43%; 11-trans-LTD4, 47%; LTE4,

6%; LTF4, 50%; (5R, 6R)-LTC4, 100%; (5S, 6S)-LTC4, 17%;

(5R, 5S)-LTC4, 0.7%; LTC4-sulfone, 10%; LTD4-sulfone, 7%;

LTF4-sulfone, 0.4%; LTF4-sulfone, 1.0%; and LTD4, (5S, 6R)-

7,8,9,10,11,12,14,15-octahydro-LTC4, PGE2, PGF2α, glutathione,

5-HETE, and arachidonic acid each <0.2% (34). The LTC4 RIA had a sensitivity of 20 pg/0.1 ml sample.

Statistical Analyses. The pulmonary function data were evaluated by analysis of variance (ANOVA) using the protected least significant difference method (Statview II, Abacus Concepts, Berkeley, CA). This method uses a multiple t statistic to evaluate all possible pairwise comparisons and is applicable for both equal and
Figure 2. Histologic evidence of airway inflammation in OVA-treated and control mice: effect of 5-lipoxygenase inhibition. Lung tissue was obtained from sham-sensitized and saline-challenged mice (A), and OVA-immunized/challenged mice in the absence (B) or presence (C) of zileuton treatment. Lung sections were stained in Discombe’s solution, counterstained with methylene blue, and examined by light microscopy as described in Materials and Methods. (A) The airway lumen (AL) is clear of mucus and cells in control mice. The bronchial epithelium is intact. Connective tissue cells but not leukocytes are present in the peribronchial interstitial space. (B) Large amounts of secreted mucus are identified in the lumen of the airways of the OVA-sensitized/challenged mice by methylene blue staining. Massive infiltration of the interstitial tissue by eosinophils and other inflammatory cells is noted (arrows). (C) Airway mucus release in the airway lumen (AL) is markedly reduced when the 5-lipoxygenase inhibitor zileuton is given before i.n. OVA. The infiltration of the interstitial tissue by eosinophils is also reduced after zileuton treatment compared to OVA-challenge alone (B). Bars, 100 µm.

Figure 3. Eosinophil infiltration of lung tissue and BAL fluid in OVA-treated mice. Lung tissue and BAL fluid cells from OVA-immunized/challenged mice were stained for eosinophils as described in Fig. 2 B. (A) Eosinophils (arrows) are the predominant inflammatory cell in the interstitial tissue of the airway. (B) Large accumulation of mucus (arrowheads) in the airway lumen is observed. Many goblet cells (*) are seen in the airway. Numerous eosinophils (arrows) are found in the mucus plug. (C) The majority of the BAL fluid cells are eosinophils (arrows). Alveolar macrophages (arrowheads) are also observed. Bars, (A) 50 µm; (B and C) 10 µm.

1486 Role of Leukotrienes in Allergic Airway Inflammation
Figure 4. Mucus occlusion of lower airways in OVA-treated mice. Lower lobe tissue of the left lung from OVA-immunized/challenged mice was stained for mucus by mucicarmine (A), toluidine blue (B), alcian blue (C), and alcian blue/PAS (D) procedures as described in Materials and Methods. (A) Airway mucin is stained rose-red by mucicarmine, and interstitium is stained yellow by the metanil yellow counterstain. (B) Mucin and nonsulfated acidic mucosubstances are stained metachromatically red-purple by toluidine blue. (C) Acidic sulfated mucosubstances and mucins are stained blue by alcian blue, and nuclei are stained pink-red by the nuclear fast red counterstain. (D) Acidic and neutral mucosubstances are stained magenta by alcian blue/PAS. Bar, 100 μm.
unequal pair sizes. The other data are reported as the mean \pm SE of the combined experiments. Differences were analyzed for significance (P < 0.05) by Student's two-tailed t test for independent means.

Results

Allergen-Specific IgE Production. OVA-specific IgE (14.9 ± 3.5 U/ml, n = 5) was detected on day 28 in the blood of mice given i.p. OVA and alum on day 0 and 14 and i.n. OVA on days 25, 26, and 27. In contrast, control mice treated with i.p. saline and alum and i.n. saline (n = 6) had no detectable anti-OVA IgE.

Allergen-induced Eicosanoid Release in BAL Fluid. BAL fluid was obtained 24 h after the third i.n. administration of either OVA or saline in mice that had received i.p. either OVA or saline respectively and assayed for eicosanoids. The BAL fluid levels of the 5-lipoxygenase products LTB4 (Fig. 1 A) and LTC4 (Fig. 1 B) were 3.4-fold (P <0.03 compared to saline) and 5.0-fold (P <0.05, compared to saline) higher respectively in the OVA-immunized/challenged mice than in the mice receiving saline only. The selective 5-lipoxygenase inhibitor zileuton given 30 min before i.n. challenge with OVA on day 25, 26, and 27 significantly inhibited LTB4 and LTC4 release compared to mice challenged with i.n. OVA in the absence of zileuton (Fig. 1). The levels of LTB4 and LTC4 in the BAL fluid of OVA-immunized/challenged mice treated with zileuton were not significantly different from those of the saline control group (Fig. 1).

Allergen-induced Airway Inflammation. To assess allergen-induced airway inflammation histologically, lung tissue and BAL fluid were obtained on day 28, 24 h after the last of 3 sequential i.n. OVA challenges on days 25, 26, and 27. By light microscopy, prominent infiltration of the bronchial interstitium by eosinophils was observed (Figs. 2 B and 3 A). Eosinophil influx into the bronchial epithelial mucus layer (Fig. 3 B) and the BAL fluid (Fig. 3 C) was also noted. 63.6 ± 3.2% (n = 10) of the BAL fluid cells were eosinophils in OVA-sensitized/challenged mice compared to 0.8 ± 0.3% (n = 10) in saline-challenged control animals (P = 0.0001). Mucus occlusion of the airways occurred in immunized mice after bronchial challenge with OVA (Fig. 2 B). Airway mucus release in both lower (Fig. 4) and upper (Fig. 5) pulmonary airways was identified by several histochemical staining procedures: mucin by mucicarmine stain (Figs. 4 A and 5 A), acidic nonsulfated mucosubstances by toluidine blue (Figs. 4 B and 5 B), acidic sulfated mucosubstances by alcian blue (Figs. 4 C and 5 C), and neutral and acidic mucosubstances by alcian blue/PAS reaction (Figs. 4 D and 5 D). Airway lumen occlusion by mucus was greater in the smaller diameter airways. These inflammatory changes were absent in i.n. saline-challenged control animals that had been treated i.p. with either saline (Fig. 2 A) or OVA (not shown) with alum.

Leukotriene Inhibition Blocks Eosinophil Infiltration and Mucus Accumulation in Airways. 5-Lipoxygenase inhibition by zileuton markedly reduced eosinophil influx into the lung tissue and BAL fluid of OVA-sensitized/challenged mice and also prevented airway mucus release in these animals (Fig. 2 C).

Eosinophil Infiltration. By morphometric analysis, the eosinophil influx into the lung interstitium was reduced 82% by zileuton treatment (P <0.006 compared to OVA without zileuton) (Fig. 6 A). The FLAP inhibitor MK-886 decreased the number of eosinophils in the BAL fluid by 86% (P <0.0004 compared to OVA without MK-886) (Fig. 6 B).
Effect of 5-lipoxygenase inhibition on mucus accumulation in the airways of OVA-treated and control mice. The percent distribution of mucus occlusion of airways from sham-sensitized and saline-challenged mice (Saline; n = 8), and OVA-sensitized/challenged mice in the absence (OVA; n = 7) or presence (Zileuton/OVA; n = 7) of zileuton treatment. Mucus occlusion of airway diameter was assayed morphometrically as follows: 0, no mucus; +, ~10% occlusion; ++, ~30% occlusion; ++++, ~50% occlusion; +++++, 50-100% occlusion; 10 airways randomly distributed throughout the left lung of each mouse were assessed for mucus occlusion morphometrically.

The number of eosinophils in the BAL fluid from the OVA-sensitized/challenged mice treated with the FLAP inhibitor (0.57 ± 0.11 x 105, Fig. 6 B) was not significantly different from that in either sham-sensitized/saline-challenged (0.12 ± 0.02 x 105, Fig. 6 B) or OVA-immunized/saline-challenged (0.16 ± 0.03 x 105, not shown) control mice. Zileuton similarly decreased eosinophils recovered in the BAL fluid of OVA-sensitized/challenged mice by 91% (P = 0.0128 compared to OVA without zileuton; data not shown). Vehicle controls (Trappson™ for zileuton studies, DMSO for MK-886 studies) did not affect the lung eosinophil infiltration observed in OVA-sensitized/challenged mice.

Mucus Accumulation. Cross-sections of the upper and lower lobes of the left lung of OVA-treated and control mice were examined by light microscopy for mucus accumulation in the airways. By morphometric analysis, 68% of the airways of control mice treated with saline had no evidence of airway mucus release, and the remainder had only a small mucus layer observed (Fig. 7). In contrast, OVA-immunized/challenged mice had morphologic evidence for widespread mucus plugging of the airways. The majority (74%) of the airways of the OVA-treated mice had at least 30% occlusion of the airway lumen by mucus; 22% of the airways of these mice had 80% or greater mucus occlusion (Fig. 7). When the amount of mucus glycoprotein recovered in the BAL fluid was quantitated (Fig. 8), a sevenfold increase in airway mucin was demonstrated in OVA-treated mice compared to control mice (P = 0.00001 OVA versus saline). Zileuton treatment blocked the airway mucus release in the OVA-treated mice (Figs. 2 C and 8). The importance of leukotrienes in airway mucus release was further demonstrated by the ability of LTD4 administered exogenously by the i.n. route to induce airway mucus release (Fig. 9).

5-Lipoxygenase Inhibition Does Not Alter Allergen-induced Airway Hyperreactivity to Methacholine. Mice receiving i.p. and i.n. OVA had increased airway reactivity compared to control mice receiving saline. The OVA-treated mice required significantly lower concentrations of methacholine to decrease G2 (Fig. 10 A) and Cdyn (Fig. 10 B) than control mice that had been sham-sensitized and challenged with saline (Table 1) or OVA-immunized/saline challenged (not shown). Although leukotriene inhibition blocked airway eosinophil influx and mucus release in OVA-treated mice, zileuton given before OVA on day 25, 26, and 27 did not reduce airway hyperresponsiveness to methacholine in these mice.
Figure 10. 5-Lipoxygenase inhibition does not alter methacholine-induced airway responsiveness in OVA-treated mice. Airway responsiveness to increasing concentrations of methacholine was determined in sham-sensitized and saline-challenged mice (Saline; n = 19), and OVA-sensitized/challenged mice in the absence (OVA; n = 18) or presence (Zileuton/OVA; n = 17) of zileuton treatment. (A) Airway conductance and (B) dynamic lung compliance were calculated as described in Materials and Methods. The data are mean ± SE. *P < 0.05 by ANOVA, Saline versus the OVA and Zileuton/OVA groups.

Table 1. Pulmonary Mechanics to Methacholine in OVA-treated Mice: Effect of Leukotriene Inhibition

<table>
<thead>
<tr>
<th>Group</th>
<th>Conductance (G_L)</th>
<th>Dynamic compliance (C_dy, n)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>ED_{50} methacholine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ml/s × cm H_2O</td>
<td>Geometric mean μg/kg</td>
<td>Log SD</td>
<td>Geometric mean μg/kg</td>
<td>Log SD</td>
</tr>
<tr>
<td>Saline</td>
<td>1.30 ± 0.04</td>
<td>104*</td>
<td>0.29</td>
<td>0.028 ± 0.001</td>
<td>277*</td>
</tr>
<tr>
<td>OVA</td>
<td>1.22 ± 0.03</td>
<td>56</td>
<td>0.20</td>
<td>0.026 ± 0.001</td>
<td>107</td>
</tr>
<tr>
<td>Zileuton/OVA</td>
<td>1.24 ± 0.03</td>
<td>54</td>
<td>0.23</td>
<td>0.026 ± 0.001</td>
<td>111</td>
</tr>
</tbody>
</table>

Data represent mean ± SE. G_L and C_{dy, n} were determined in sham-sensitized and saline-challenged mice (Saline, n = 19), and OVA-sensitized/challenged mice in the absence (OVA; n = 18) or presence (Zileuton/OVA; n = 18) of zileuton treatment.

*P < 0.05 vs both other groups (by ANOVA using the protected least significant difference method).
and cysteinyl leukotrienes are elevated in the BAL fluid of patients with nocturnal asthma compared to normal control subjects (35). Increased levels of LTB4 and LTC4 are recovered in the BAL fluid (11, 12) and elevated levels of the LTC4 metabolite LTE4 are detected in the urine (36) after endobronchial challenge with specific allergen compared to prechallenge levels of these eicosanoids. Similarly, in this mouse model of asthma, we found that levels of LTB4 and LTC4 were significantly increased in BAL fluid after airway allergen challenge; this release of leukotrienes was blocked by the specific 5-lipoxygenase inhibitor zileuton.

Various mediators including histamine, platelet-activating factor, prostaglandins, thromboxane A2, and leukotrienes have been implicated in airway mucus release (37). Cysteinyl leukotrienes C4 and D4 stimulate mucus secretion from cat (38), dog (39), and guinea pig (40) trachea and bronchi in vivo and human bronchial explants in vitro (41, 42). We have demonstrated in mice that exogenous LTD4 induces airway mucus release in vivo. When compared with other mucus secretagogues for inducing release of mucus glycoproteins from cultured human bronchial tissues, the rank order of potency (on a molar basis) is LTD4 >> LTC4 > mono-hydroxyeicosatetraenoic acids >> LTB4 >> PGD2 = PGE2 = PGF2 = histamine (37, 43, 44). A striking finding of our study is that inhibition of leukotriene formation prevents allergen-induced mucus plugging of mouse airways in vivo. These results suggest that leukotrienes play a major role in this mucus secretory process.

LTB4 is recognized as one of the most potent chemotactants for leukocytes. LTB4 promotes chemotaxis and chemokinetics of eosinophils from various animal species (45, 46) and humans (7, 47, 48). In patients with nocturnal asthma, the increased LTB4 levels in nocturnal BAL fluid correlate significantly with the increased number of eosinophils recovered in these samples (35). The cysteinyl leukotrienes also exert potent chemotactic activity for eosinophils. LTD4 promotes human eosinophil chemotaxis in vitro beginning at 10^{-10} M (7). The specific LTD4 receptor antagonist MK-571 significantly reduces OVA-induced eosinophil influx into guinea pig conjunctiva in vivo 17 h after allergen challenge (49). Inhalation of LTE4 in patients with asthma significantly increases the number of eosinophils recovered in the airway lamina propria 4 h after LTE4 challenge (6).

In our studies, inhibition of leukotriene release by either a 5-lipoxygenase inhibitor (zileuton) or FLAP inhibitor (MK-886) was found to significantly inhibit eosinophil infiltration into both airway interstitial tissue and the BAL fluid indicating an important role for leukotrienes in mediating allergic airway infiltration by eosinophils, a key feature of asthma. However, these data dissociate the airway eosinophil influx from the increased airway responsiveness to methacholine. Although leukotriene inhibition markedly reduced the eosinophil infiltration, such inhibition did not affect the bronchial hyperresponsiveness.

Other studies in both rats and mice have also suggested that BAL eosinophilia may be dissociated from airway hyperresponsiveness. When mononuclear cells isolated from peribronchial lymph nodes from OVA-sensitized Brown Norway rats were transferred to naive syngeneic recipients, the recipient rats after OVA aerosol challenge developed late asthma responses (50). In recipients of either sensitized or sham-sensitized mononuclear cells, the number of BAL fluid eosinophils increased at 32 h. A negative correlation between the number of BAL fluid eosinophils and airway responsiveness to methacholine was observed in these studies (50). In OVA-sensitized BALB/c mice, airway hyperresponsiveness to acetylcholine and an influx of eosinophils into the BAL fluid was observed 24 h after the last aerosol challenge with OVA (51). Although treatment with anti-IL-5 mAb during the systemic immunization period decreased BAL fluid eosinophils from 44 to 2%, no effect on the airway response to acetylcholine was seen (51). These results contrast, however, with studies employing IL-5 deficient mice in which eosinophilia was closely correlated with airway reactivity (52). Whereas, airway hyperreactivity to methacholine and airway eosinophilia were absent in aeroallergen-challenged OVA-sensitized IL-5 deficient mice, airway eosinophilia and hyperreactivity were restored with reconstitution of IL-5 production (52). Differences in conclusions regarding the role of eosinophils in airway responsiveness may be specific to the different antigen sensitization/immunization protocols and animal species employed in these studies. Further, many mechanisms other than leukotriene release could potentially mediate the observed pulmonary function changes (e.g., alteration in smooth muscle contractility, neuropeptides, muscarinic receptor defects) (53-55).

Our studies indicate that leukotriene inhibitors have a marked antiinflammatory effect on allergic lung inflammation in an animal model that reproduces many of the features of human asthma. These antiinflammatory actions may prove useful in the therapy of asthma and other inflammatory diseases.

We thank Dong Nguyen and Liou Tang for excellent technical assistance and Rachel Norris for typing this manuscript.

This work was supported by National Institutes of Health grants AI34578, AI17758, and HL30542.

Address correspondence to William R. Henderson, Jr., M.D., Room BB1333, Health Sciences, Department of Medicine, Box 356523, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195-6523.
References

