The Fas Counterattack: Fas-mediated T Cell Killing by Colon Cancer Cells Expressing Fas Ligand

By Joe O’Connell, Gerald C. O’Sullivan, J. Kevin Collins, and Fergus Shanahan

From the National University of Ireland, Cork, Ireland

Summary

Tumors escape immunological rejection by a diversity of mechanisms. In this report, we demonstrate that the colon cancer cell SW620 expresses functional Fas ligand (FasL), the triggering agent of Fas receptor (FasR)-mediated apoptosis within the immune system. FasL mRNA and cell surface FasL were detected in SW620 cells using reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining, respectively. We show that SW620 kills Jurkat T cells in a Fas-mediated manner. FasR-specific antisense oligonucleotide treatment, which transiently inhibited FasR expression, completely protected Jurkat cells from killing by SW620. FasL-specific antisense oligonucleotide treatment of SW620 inhibited its Jurkat-killing activity. FasL has recently been established as a mediator of immune privilege in mouse retina and testis. Our finding that colon cancer cells express functional FasL suggests it may play an analogous role in bestowing immune privilege on human tumors. HT29 and SW620 colon cancer cells were found to express FasR mRNA and cell surface FasR using RT-PCR and immunofluorescence flow cytometry, respectively. However, neither of these cells underwent apoptosis after treatment by the anti-FasR agonistic monoclonal antibody CH11. Our results therefore suggest a Fas counterattack model for immune escape in colon cancer, whereby the cancer cells resist Fas-mediated T cell cytotoxicity but express functional FasL, an apoptotic death signal to which activated T cells are inherently sensitive.

Cancers escape immune clearance by a diversity of mechanisms. Although these include evasive strategies to avoid immune recognition, such as disruption of T cell–extracellular matrix interactions and aberration of antigen processing and presentation, tumors also engage in active modulation and suppression of immune cell function. Local immune suppression due to tumor-derived agents is a feature of many cancer types. Chemically induced mouse colon tumors have been shown to cause profound local suppression of mucosal immune function (1). The local immune suppression associated with esophageal squamous carcinoma is mediated by a tumor-derived factor that results in suppression and ultimately apoptotic cell death of activated lymphocytes (2). Well-established tumor-derived immune modulatory molecules include downregulatory cytokines, immunosuppressive aminosugars (free hexosamines) (3), and gangliosides (4, 5).

Fas ligand (FasL) is a key molecule in normal immune development, homeostasis, modulation, and function (6). Ligation onto its receptor, FasR (CD95), on sensitized cells induces programmed cell death, or apoptosis. This Fas-mediated apoptotic death signal has a number of important immunological roles. Fas-mediated apoptosis is involved in such functions as thymocyte clonal deletion and tolerance acquisition (7), T cell activation–induced cell death (8), immune response termination (9), and T cell–mediated cytotoxicity (10). Dysfunction of Fas-mediated apoptosis has been associated with lymphoproliferative diseases and autoimmunity in humans (11, 12) and mice (13).

Recently, two reports established a role for FasL in the maintenance of immune privilege in mouse testis (14) and in the anterior chamber of the eye (15). FasL expressed in these tissues induces apoptosis in activated lymphocytes that infiltrate these sites.

FasL has been found to be constitutively expressed in some NK lymphomas and T cell–type large granular lymphocyte leukemias—malignancies of cells that normally express FasL upon activation (16). Because of its central role in lymphocyte modulation through delivery of an apoptotic death signal, we investigated the expression and function of FasL in gastrointestinal cancer cells as a candidate for tumor-derived immune modulation and hence tumor immune escape.

FasR expression and response are variable in human lymphoid (17, 18) and nonlymphoid malignancies (19), and
resistance to Fas-mediated cytotoxicity may contribute to
tumor immune escape. Resistance to cellular apoptotic
mechanisms in general is thought to contribute to tumori-
genicity (20), and recent studies have shown that known
promoters, including nicotine, inhibit both FasR- and
TNF-mediated apoptosis (21). Resistance to FasR has
been observed in HIV- (22) and HTLV-1 (23)-infected T
cells and may contribute to viral immune escape. Because
of its role in receiving and transducing the FasR-mediated
apoptotic signal from cytotoxic T cells, and because dys-
fuction in the FasR-signaling pathway results in resistance to
Fas-mediated cytotoxicity, we also assessed FasR expres-
sion and function on gastrointestinal cancer cells.

Materials and Methods

Cells. OC1 and OC2 are human esophageal squamous carci-
noma cell lines developed in our laboratory (24); HT29 and
SW620 human colon epithelial adenocarcinoma cell lines and the
Jurkat human T leukemia cell line were obtained from American
Type Culture Collection (Rockville, MD). All cells were grown
in DMEM supplemented with 10% FCS in a humidified 10%
CO2 atmosphere, except as otherwise indicated.

Reverse Transcription (RT) PCR Detection of FasR and FasL
mRNA Expression. RNA was isolated from cells by lysis in
guanidine thiocyanate (Sigma Chemical Co., St. Louis, MO) fol-
lowed by phenol extraction and ethanol precipitation. cDNA was
synthesized using AMV reverse transcriptase (Promega Corp.,
Wisconsin) and random hexanucleotide primers (Boehringer
Mannheim GmbH, Mannheim, Germany).

PCR was performed on the cDNA using the following sense
and antisense primers, respectively: FasR: CAGAACCTTGGAGG-
CCCTGCATC and TCTGTTCTGCTGTGTCTTGGAC; FasL:
GAATGGGCCTGGGGATGTTTCA and TTGTGGCTCCAGG-
GCACCA and CTCCTTTAATGTCACGCACGGTCCC.

PCR primers were designed using the DNASTAR Lasergene
PrimeSelect program (DNASTAR, Inc., Madison, WI). Primer
pairs were chosen to span introns in their genomic sequences,
thus ensuring mRNA-specific amplification. Primers were se-
lected that showed insignificant homology to any other genes in
the EMBL DNA sequence database. The FasR primers span ex-
ons 3–6 and thus enable amplification of the three splice variants
of FasR. mRNA identified in normal activated lymphocytes that
code for soluble forms of FasR (25).

Thermal cycling was as follows: denaturation at 96°C for 15 s;
annealing at 55°C for 30 s, and extension at 72°C for 3 min.
40 cycles were performed for the FasR and Fasl PCR products, 35 cycles for the
β-actin PCR. Primers were used at a final concentration of
0.1 µM each, dNTPs at 50 µM, and MgCl2 at 1.5 mM. 1 U of
Taq DNA polymerase was used per 50-µl reaction. PCR prod-
ucts were analyzed by electrophoresis through 2% agarose gels,
DNA internucleosomal fragmentation

Assessment of Anti-Fas mAb CH11-induced Apoptosis. Sensi-
tivity of cells to Fas-mediated apoptosis was determined by treat-
ment with the agonistic anti-Fas mAb CH11 IgM mAb (Kamiya
Biomedicals Co., Thousand Oaks, CA) or isotype control IgM at
0.1 µg/ml. After antibody treatment, DNA was isolated from
cells by the following procedure: cells were lysed in 0.5 ml of a
buffer consisting of 100 mM Tris-Cl, pH 8; 150 mM NaCl; 20
mM EDTA, and 0.8% sodium lauryl sarcosinate. RNA was elim-
inated by the addition of 10 µl of RNase A (Boehringer Mann-
heim GmbH; at a concentration of 10 mg/ml in a buffer contain-
ing 10 mM Tris-Cl, pH 7.6, and 15 mM NaCl that was rendered
DNase free by boiling for 15 min followed by slow cooling to
room temperature) and digesting for 1 h at 37°C. Proteins were
degraded by digestion with 10 µl of proteinase K (Boehringer Mann-
heim GmbH; 20 mg/ml in water) at 50°C for 2 h. Chro-
mosomal DNA was then purified by a single phenol extraction
followed by ethanol precipitation, after which the DNA pellet
was redissolved in 20 µl of TE (10 mM Tris-Cl, pH 8.0, and 1
mM EDTA). DNA integrity was assessed by electrophoresis
through 2% agarose gels, DNA internucleosomal fragmentation
or laddering being indicative of apoptosis.

Antisense Oligonucleotide Treatment. During antisense treat-
ment, cells were maintained in reduced-serum medium (OptiMEM; Sigma
Chemical Co.) to limit the degradation of oligonucleotides by
serum–derived nucleases (26). Oligonucleotide uptake was
facilitated by complexing with the cationic lipid transfection
reagent N-[1-(2,3-Dioleoyloxy)propyll-N,N,N-trimethylammon-
ium methylsulfate (DOTAP), which has been shown to en-
hance DNA uptake by cells (27). Complexing with DOTAP has
also been shown to protect oligonucleotides from nucleolytic
degradation within the cell. Cells were treated with oligonucle-
otides and the cationic lipid vector DOTAP (Boehringer Mann-
heim GmbH) at final concentrations of 10 and 13 µM, respec-
tively for 5 min. Slides were washed as before except that the wash
buffer for this and all subsequent steps included 1% normal goat
serum. Slides were then blocked for 1 h in wash buffer contain-
ing 5% normal goat serum. Slides were washed and incubated over-
night at 4°C with a rabbit polyclonal anti-human FasL-specific
IgG (Santa Cruz Biotechnology, Santa Cruz, CA) at 0.1 µg/ml
in wash buffer. Antibody binding was localized using a biotiny-
lated secondary antibody, avidin-conjugated horseradish peroxi-
dase, and diaminobenzidine substrate, contained within the Vec-
tastain ABC detection kit (Vector Laboratories, Inc., Burlingame,
CA). Staining with isotype-matched rabbit IgG was performed as
a negative control. The immunizing peptide (NH2-terminal amino
acids 2–19; Santa Cruz Biotechnology) was included at 1 µg/ml
during the primary antibody incubation as a specific inhibitor of
Fas staining in additional control staining. Slides were counter-
stained with hematoxylin.

Immunofluorescence Flow Cytometric Measurement of Cell Surface
FasR. Mouse anti-human FasR mAb (IgG2a) was obtained from
PharMingen (San Diego, CA). Adherent cells were harvested by
scraping. Cells were washed in PBS and incubated with 5 µg/ml
IgG2a for 30 min at 4°C and washed in PBS containing 2% FCS.
FITC-conjugated secondary antibody (Dako Corp., Carpinteria,
CA) was added to the cells for 30 min at 4°C. Cells were washed
again in PBS containing 2% FCS. Flow cytometric analysis was
performed using a flow cytometer (Epics Elite; Coulter Corp.,
Hialeah, FL). 10,000 cells were examined for each determination.
Isotype-matched control antibody was used in negative control
staining.

Immunohistochemical Detection of Cell Surface Fasl. Mouse
anti-human Fasl mAb (IgG1) (Kamiya Biomedical Co., Thousand
Oaks, CA) was added to the cells for 30 min at 4°C. Cells were washed
again in PBS containing 2% FCS. Flow cytometric analysis was
performed using a flow cytometer (Epics Elite; Coulter Corp.,
Hialeah, FL). 10,000 cells were examined for each determination.
Isotype-matched control antibody was used in negative control
staining.
Published September 1, 1996

where E (experimental) is cpm of retained DNA in the presence of target cell DNA fragmentation during the assay.

The control nonsense oligonucleotide had the following nonspecific nucleotide sequence: AATTCTACTG-GTTGTTCTGCTGGT.

Coculture DNA Fragmentation Assay (The JAM Test). Target Jurkat cell death resulting from coculture with effector colon cancer cells was quantitated by measurement of target cell DNA fragmentation using the JAM test (28). The adherent colon cancer cells were seeded into the wells of a flat-bottomed 96-well microtiter plate at cell numbers appropriate to give the required E/T ratios. The cells thus seeded were incubated at 37°C for 24 h and aspirated before the addition of 2 x 10^6 Jurkat target cells. Target cell DNA was labeled by prior incubation with 10 μCi/ml of [3H]TdR at 37°C for 3 h. Oligonucleotide-treated cells were washed in culture medium (OptiMEM) before labeling. Labeled target cells were washed and added to the seeded effector cells in a final volume of 200 μl per well. After coculture at 37°C for 8 h, the cells were removed from the wells by pipetting up and down five times and were collected by filtration onto glass fiber filters using a 96-well filtration unit. The cells were hypotonically lysed, and fragmented DNA was washed through the filter by four washes of 0.25 ml of water. The radioactivity of intact chromosomal DNA retained on each filter was measured by liquid scintillation counting. Specific cell killing was calculated using the following equation:

\[
\% \text{ Specific killing} = (S - E/S) \times 100
\]

where \(E \) (experimental) is cpm of retained DNA in the presence of effector cells, and \(S \) (spontaneous) is cpm of retained DNA in the absence of effector cells. Use of the value of \(S \) rather than total incorporated counts in the equation corrects for spontaneous target cell DNA fragmentation during the assay.

Results and Discussion

FasR-bearing Colon Cancer Cells Are Resistant to Fas-mediated Induction of Apoptosis. RT-PCR results show that both colon adenocarcinoma cell lines HT29 and SW620, but neither esophageal squamous carcinoma cell lines OC1 or OC2, express FasR mRNA (Fig. 1). The FasR RT-PCR assay was controlled by equalization of input RNA for each cell line. Comparable amplification efficiencies were achieved in all RNA samples as evidenced by the uniformity of control β-actin RT-PCR product yields. Equivalent FasR PCR product band intensities suggest that both HT29 and SW620 express levels of FasR qualitatively similar to that expressed in PHA-activated PBL. This was confirmed by detection of cell surface FasR on HT29 and SW620 cells by immunofluorescence flow cytometry after staining with a FasR-specific mAb (Fig. 2). FasR staining was absent from OC1 and OC2.

FasR expression alone does not imply sensitivity to Fas-mediated apoptosis, and other factors determine whether the FasL signal is transduced. Low FasR–expressing malignant glioma cells showed that a critical level of FasR expression is required for apoptotic signaling. Simply elevating subcritical FasR expression rendered these cells Fas sensitive (29). Mutations of p53 have been associated with lack of FasR expression in transformed cells (30). IFN-γ and TNF-α are required to potentiate FasR in some normal (31–33) and malignant (29, 34) cells. The Fas-sensitizing effect of these cytokines is partly associated with induction or upregulation of FasR expression. Indeed, IFN-γ has been shown to elevate FasR expression in HT29 (35). As our results indicate, HT29 and SW620 constitutively express levels of FasR mRNA comparable with that expressed in activated lymphocytes and cell surface FasR comparable with that expressed in Fas-sensitive Jurkat cells.

\[\text{Log Fluorescence Intensity} \]

\[\text{Relative Cell Number} \]

Figure 1. FasR and FasL mRNAs expression in gastrointestinal cancer cells. Expression was analyzed by RT-PCR of equalized input RNA isolated from each cell line. Resting (R) and PHA-activated (A) PBL were used as negative and positive controls, respectively. β-actin control PCR was performed to monitor RT-PCR amplification efficiency. mRNA-specific amplification product bands for FasR (682 bp), FasL (344 bp), and β-actin (540 bp) are indicated. The minor band (619 bp) obtained from the HL60 neutrophil control mRNA corresponds to the FasR Delta 1 mRNA splice variant, which encodes a soluble form of FasR. PHX174-HaeIII size markers (M) were used.

Figure 2. Cell surface FasR expression in gastrointestinal cancer cells. 10⁶ cells were stained with mouse anti-human FasR monoclonal IgG followed by staining with a secondary FITC-conjugated anti-mouse IgG antibody. FasR expression was determined by flow cytometric analysis. The profiles obtained by FasR antibody staining (shaded peaks) relative to control antibody staining (open peaks) are shown.
FasR function in HT29 and SW620 was assessed by treatment of these cells with the anti-FasR agonistic mAb CH11 and analysis of anti-FasR–induced internucleosomal DNA cleavage. After 6- and 24-h incubations with this mAb, neither HT29 nor SW620 showed any evidence of apoptosis using the DNA fragmentation assay (Fig. 3). After CH11 treatment, both cell types showed intact chromosomal DNA, equivalent in integrity to untreated cells incubated for 24 h. Both cell lines were as refractory to the effect of the anti-FasR agonistic mAb as the FasR-negative OC2 cell line. Under identical conditions, treatment of the Fas-sensitive Jurkat control cells with CH11 resulted in pronounced apoptotic DNA fragmentation into DNA ladders of nucleosomal oligomers of ~180 bp after 6 h of treatment relative to the intact DNA of untreated Jurkat cells incubated for 24 h. Hence, HT29 and SW620, although expressing cell surface FasR, are resistant to induction of apoptosis through agonistic engagement of FasR.

Expression of soluble, potentially antagonistic forms of FasR from splice variants of FasR mRNA lacking the transmembrane exon has been shown in some cells (36) and may contribute to Fas resistance in certain pathological conditions, including SLE (37, 38). Three splice variants of FasR mRNA have been detected in normal activated lymphocytes (25). Although a minor band was observed in the RT-PCR products from the HL60 control mRNA, which corresponds to the FasR Delta 1 mRNA splice variant, no PCR product bands derived from amplification of spliced variants Delta 1, 2, or 3 (619-, 435-, or 372-bp expected product sizes, respectively) were detectable in any of the other cell lines. Hence, expression of soluble FasR can be eliminated as a mechanism of Fas resistance in HT29 and SW620.

The level of expression of genes involved in the control of apoptosis can affect the Fas sensitivity of cells. Expression and upregulation of bcl 2 has been implicated in a variety of cell types as protective against apoptotic cell death, including Fas-mediated apoptosis (34, 39–41). Using immunofluorescence flow cytometry, we found that although SW620 expresses bcl 2, the level of expression in HT29 was negligible (unpublished observations), so that Fas resistance in these colon adenocarcinoma cells does not correlate with bcl 2 expression.

Colon Cancer Cell SW620 Expresses FasL. RT-PCR results show that SW620, but none of the other cell lines HT29, OC1, or OC2, expresses FasL mRNA (Fig. 1). The FasL PCR was performed on the same cDNA preparations used for the FasR and β-actin control RT-PCR assays and was therefore similarly controlled for equalization of input RNA and amplification efficiency. By comparing FasL RT-PCR band intensities, SW620 expresses a level of FasL mRNA qualitatively much higher than that expressed by PHA-activated PBL. Immunohistochemical staining shows that SW620 expresses cell surface FasL (Fig. 4). FasL specificity was confirmed as staining of SW620 was inhibited by inclusion of the immunizing FasL peptide as a competitive inhibitor in the primary antibody incubation. These findings show that FasL expression is not restricted to lymphoid cells and tissues and sites of immune privilege in the body.

Using Fas-sensitive Jurkat indicator cells, FasL activity was undetectable in culture fluid conditioned by SW620 cells. Jurkat cells were incubated for 24 h in SW620 cell-conditioned medium or mixtures of cell-conditioned and fresh media. This treatment failed to cause induction of apoptosis above background levels (10–15% in Jurkat cells) detectable by either the DNA fragmentation assay or flow cytometric detection of apoptotic bodies after propidium iodide staining of treated cells (unpublished observations). This suggests that the FasL expressed by SW620 is not shed by these cells.

Fas-sensitive Jurkat T Cells Are Killed by Coculture with SW620. Having demonstrated that SW620 cells express FasL, but are themselves resistant to Fas-mediated apoptosis, we wished to ascertain if the FasL was functional and therefore if SW620 could induce apoptosis in Fas-sensitive cells. In particular, we wished to know if SW620 cancer cells could kill activated, Fas-sensitive T cells in this way, which would suggest a potential mechanism of tumor immune escape. To address this question, we used Jurkat as a target cell in coculture experiments with SW620. Jurkat is a Fas-sensitive cell line of T cell origin that is constitutively activated and has been widely used experimentally as a model for activated T cells, with which it shares functional similarities. Jurkat cells are particularly appropriate target cells for investigating putative FasL activity because they are insensitive to TNF-α, another major mediator of apoptotic cell death, and to lymphotoxin α (8).

Using the DNA gel fragmentation assay, we observed that DNA from cocultured Jurkat and SW620 cells showed pronounced nucleosomal DNA laddering relative to either cell line incubated alone or to Jurkat cells cocultured with FasL-negative HT29 colon cancer cells. These preliminary results were suggestive of apoptotic killing of the Jurkat cells by the Fas-resistant, FasL-expressing SW620 cells. A more sensitive and controlled coculture cell killing assay,
Figure 4. Colon cancer cell SW620 expresses cell surface FasL. SW620 cells were stained with a rabbit polyclonal anti-human FasL-specific IgG and counterstained with hematoxylin (purple). Positive staining (brown) was obtained (A), whereas isotype control rabbit IgG failed to stain the cells (B). Positive staining was reduced by coincubation of the primary antibody with the FasL immunizing peptide (not shown).

The JAM test (28), was adopted to resolve the source of the apoptotic DNA fragments observed after coculture of Jurkat with SW620 cells. By prelabeling the target Jurkat cell DNA with [3H]TdR, specific DNA fragmentation of the target cells in response to the cocultured effector SW620 cells was quantified. As seen in Fig. 6A, SW620 effected 30% specific killing of Jurkat cells at an E/T ratio of 25:1 in an 8-h incubation. Cell killing increased with increasing E/T ratio, and pronounced killing (>20%) occurred even at a low E/T ratio equivalent to 5:1.

FasR-specific Antisense Oligonucleotide Treatment Protects Jurkat Cells from Killing by SW620. To determine whether the killing of Jurkat cells by coculture with SW620 was Fas mediated, we used Fas-specific antisense oligonucleotide treatment to render Jurkat cells temporarily FasR negative for use as control targets. The efficacy of FasR antisense oligonucleotide treatment was verified by immunofluorescence flow cytometry of treated Jurkat cells after staining with a Fas-specific mAb. In the FasR antisense oligonucleotide-treated Jurkat cells there was a reduction of cell sur-
Inhibition of FasR expression in Jurkat T cells by FasR-specific antisense oligonucleotide treatment. DOTAP-mediated Fas-specific or nonspecific control oligonucleotide treatment of Jurkat cells was performed for 24 h in optimized reduced-serum medium (OptiMEM). After oligonucleotide treatment, 10^6 cells were stained with mouse anti-human FasR monoclonal IgG followed by staining with a secondary FITC-conjugated anti-mouse IgG antibody. FasR expression was determined by flow cytometric analysis. The profiles obtained by FasR antibody staining (shaded peaks) relative to control antibody staining (open peaks) are shown for untreated (A), nonsense oligonucleotide-treated (B), and FasR-specific antisense oligonucleotide–treated Jurkat T cells (C).

Figure 6. FasL-expressing colon cancer cell SW620 kills Jurkat T cells in a Fas-dependent manner. [3H]TdR-labeled Jurkat target cells were cocultured with SW620 effector cells at the indicated E/T ratios. Target cell death was determined 8 h later by measuring DNA fragmentation of the [3H]-labeled target cell DNA (JAM test). Specific cell death was calculated relative to spontaneous cell death occurring in target cells alone. Each percent of specific killing value represents the mean of quadruplicate coculture cell-killing assays. (A) FasR-specific antisense oligonucleotide treatment of Jurkat T cells results in complete protection from killing by SW620 colon cancer cells. Nonspecific "nonsense" control oligonucleotide–treated Jurkat cells (FasR positive) are killed by coculture with SW620 cells (open squares). FasR-specific antisense oligonucleotide–treated Jurkat cells (FasR negative) are completely immune to killing by SW620 (solid circle). (B) FasL-specific antisense oligonucleotide treatment inhibits killing of Jurkat T cells by SW620. FasL-specific antisense oligonucleotide treatment results in 60% inhibition of killing of Jurkat T cells by SW620 (hatched bar) relative to nonspecific "nonsense" oligonucleotide–treated SW620 cells (solid bar). An E/T ratio of 10:1 was used.

The Fas Counterattack. We demonstrate that colon cancer cell SW620 expresses functional FasL and kills the activated T cell, Jurkat, in a Fas-dependent manner. We also show that colon cancer cells SW620 and HT29 express SW620 on Jurkat T cells relative to the nonsense oligonucleotide–treated control SW620 cells (Fig. 6 B). These data suggest that killing of Jurkat cells was mediated by FasL expressed by SW620 cells.
FasR, but are resistant to Fas-mediated apoptosis. Although the cause(s) of Fas resistance in these cells remains to be elucidated, our results eliminate underexpression of cell surface FasR, or expression of soluble FasR as reasons for resistance.

Our results suggest a Fas counterattack model as a mechanism of immune escape in colon tumors (Fig. 7). It shows how a tumor may exploit an intrinsic cell death program of the activated T cell that infiltrate it. Essentially the cancer cell counterattacks the activated cytotoxic T cell that challenges it with one of the T cell’s own principal cytotoxic armaments: FasL. The counterattack is rendered more effective as the cancer cell itself is resistant to the cytotoxic effect of FasL, whereas the attacking T cell is inherently sensitive to its apoptotic death signal.

This mechanism is analogous to the recently established role of FasL in mediating immune privilege in mice. FasL expressed in tissues and at sites of immune privilege, such as the testis (14) and the anterior chamber of the eye (15), induces apoptosis in activated lymphocytes that infiltrate these sites. Expression of functional FasL by human tumors could conceivably confer immune-privileged status on such malignancies.

Other selective advantages could theoretically accrue from expression by a tumor of such an important biological death factor to which the tumor cells themselves are resistant. FasL expression could conceivably facilitate the establishment of tumors or tumor metastases at sites where the indigenous cells express FasR and can therefore be rendered subject to the FasL-mediated cytotoxicity of the tumor. In this respect it is of interest that the FasL-expressing SW620 cell line was derived from a lymph node metastasis of a primary colon carcinoma.

Subsequent to the investigation of FasL expression and function in SW620, using RT-PCR, two other colon adenocarcinoma cell lines, T84 and CaCo2, were found to express FasL mRNA. This suggests that FasL expression may be a prevalent feature of colon carcinoma.

We thank Jacqui Kelly and Carl Vaughan for assistance with antibody staining, Fiona O’Brien for assistance with flow cytometry, and Jim O’Callaghan for technical assistance.

We thank the Health Research Board of Ireland, the Cancer Research Appeal at the Mercy Hospital, Cork, Ireland, and the Irish Government Science and Technology Board (Forbairt) for financial support.

Address correspondence to Fergus Shanahan, Department of Medicine, Clinical Sciences Building, University Hospital, Cork, Ireland.

Received for publication 1 May 1996 and in revised form 25 June 1996.

References

