Mature T Cell Reactivity Altered by Peptide Agonist that Induces Positive Selection
By Eric Sebzda,* Thomas M. Kündig,* Cole T. Thomson,* Kay Aoki,* Shi-Yen Mak,* John P. Mayer,§ Tom Zamborelli,§ Stanley G. Nathenson,* and Pamela S. Ohashi*

From the *Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, Toronto, Ontario M5G 2M9, Canada; §Departments of Microbiology and Immunology, and Cell Biology, Albert Einstein College of Medicine, New York 10461; and §Amgen, Boulder, Colorado 80301

Summary
Recent studies have investigated how defined peptides influence T cell development. Using a T cell receptor-transgenic β2-microglobulin−deficient model, we have examined T cell maturation in fetal thymic organ cultures in the presence of various peptides containing single-alanine substitutions of the strong peptide agonist, p33. Cocultivation with the peptide A4Y, which contains an altered T cell contact residue, resulted in efficient positive selection. Several in vitro assays demonstrated that A4Y was a moderate agonist relative to p33. Although A4Y promoted positive selection over a wide concentration range, high doses of this peptide could not induce clonal deletion. Thymocytes maturing in the presence of A4Y were no longer able to respond to A4Y, but could proliferate against p33. These studies demonstrate that (a) peptides that induce efficient positive selection at high concentrations are not exclusively antagonists; (b) some agonists do not promote clonal deletion; (c) positive selection requires a unique T cell receptor–peptide–major histocompatibility complex interaction; and (d) interactions with selecting peptides during T cell ontogeny may define the functional reactivity of mature T cells.

1093 J. Exp. Med. © The Rockefeller University Press 0022-1007/96/03/1093/12 $2.00
Volume 183 March 1996 1093–1104

TCRs expressed on maturing thymocytes interact with peptide–MHC complexes on thymic stromal cells and transmit signals that lead to either positive or negative T cell selection (1−3). Positive selection is an active process that rescues self-MHC−restricted thymocytes from programmed cell death. In contrast, negative selection tolerizes potentially autoreactive T cells, either through clonal deletion or unresponsiveness. Clonal deletion physically removes thymocytes by inducing apoptosis, as compared with unresponsiveness, which modifies developing T cells so that they can no longer respond against the tolerizing antigen. Since positive and negative selection shape the TCR repertoire and define the basis of self-/non-self-antigens, much research has focused on understanding T cell development. Studies have addressed how clonotypic TCRs expressed on CD4−CD8− double-positive thymocytes can distinguish between these two selection events. Although it has been demonstrated that peptides are involved in positive and negative selection (4, 5), it remains controversial whether the selecting ligand has a qualitative or quantitative role in determining the fate of the developing T cell.

Recently, altered peptide ligands have been identified that can inhibit some or all mature T cell effector functions (6−10). Antagonist peptides are defined as ligands that engage TCRs and actively inhibit biological responses. Partial agonists are closely related peptides that stimulate a subset of T cell effector functions (11). This is in contrast with agonist peptides, which induce a complete range of T cell responses. Studies by Hogquist et al. (12, 13) and Jameson et al. (14) showed a correlation between peptide antagonists and positive selection. These results suggest that a positively selecting peptide is qualitatively different from a peptide agonist and that the selecting ligand shares features characteristic of partial agonists and antagonists. However, other studies have demonstrated that low concentrations of a strong peptide agonist can promote positive selection, whereas higher concentrations of the same peptide lead to negative selection (15, 16), suggesting that quantitative differences in thymocyte–stromal cell interactions determine the fate of the maturing T cell.

The nature of the selecting ligand has direct implications on the type of signals generated during thymocyte selection and has fostered several models of T cell development (17−22). Recent experiments have demonstrated that altered peptide ligands generate a different ratio of intracellular signals compared with agonist-induced T cell activation (23, 24). These biochemical alterations support the hypothesis that a positively selecting antagonist peptide transmits a...
unique signal to an immature T cell, allowing for further maturation. For instance, a selecting ligand may induce a specific TCR conformation that conveys a partial signal, resulting in positive selection (3). Models supporting the correlation between incomplete signals generated by antagonists or partial agonists and positive selection are based on the inability of these peptides to activate mature T cells. It is equally feasible that selecting peptides simply contribute to the affinity of TCR–MHC interactions and do not possess novel signaling properties. In an attempt to address various issues, we have examined how minor changes of a natural peptide ligand alter TCR–transgenic thymocyte selection.

T cell development was examined using a TCR-transgenic mouse model (327 line) specific for lymphocytic choriomeningitis virus glycoprotein peptide (LCMV–gp)1 presented by the MHC class I molecule, H-2D\(^b\). TCR-transgenic \(\beta\)-2 microglobulin (\(\beta\)2m) deficient (TCR \(\beta\)2m \(-/-\)) mice were generated, and fetal thymic lobes from these mice were cultured in the presence of exogenous \(\beta\)2m and variousски. Our results describe a novel strong peptide agonist p33. Our results describe a novel peptide antigens.

Materials and Methods

Mice. TCR-transgenic mice were previously generated using \(\alpha\) and \(\beta\) chains isolated from CTL clone P14, which recognized the LCMV glycoprotein (peptide p33)1 presented by H-2D\(^b\). This line was crossed with H-2\(^b\) \(\beta\)2m \(-/-\) mice (26). TCR-transgenic F\(_1\) mice were subsequently backcrossed with \(\beta\)2m \(-/-\) mice to obtain TCR \(\beta\)2m \(-/-\) (H-2\(^b\)) mice. Progeny were typed for transgenic TCR and homozygous \(\beta\)2m disruption by staining peripheral blood with mAbs at 4\(^\circ\)C in PBS containing 2% FCS, 0.2% \(\mathrm{Na}_2\) \(\mathrm{PO}_4\), and 20 mM EDTA. TCR-transgenic cells were detected with rate anti–mouse V\(\beta\)8.1 (K16) mAb (27) followed by FITC-conjugated goat anti–rat mAb (Tago Inc., Burlingame, CA), \(\beta\)2m \(-/-\) mice were screened for a lack of CD8\(^+\) cells using rat anti–mouse CD8 (YTS 169.4) mAb followed by FITC-conjugated goat anti–rat mAb. After the second Ab incubation period, RBC were lysed using 1X FACS\(^\text{R}^\text{L}^\text{T}\) lysis solution (Becton Dickinson & Co., Mountain View, CA). TCR \(+\) RAG2\(^+\) mice were previously generated (29).

Fetal Thymic Organ Cultures (FTOC). Timed breedings were established between TCR \(\beta\)2m \(-/-\) H-2\(^b\) males and \(\beta\)2m \(-/-\) H-2\(^b\) females. At day 16 of gestation, females were killed, and thymic lobes were removed from the fetuses. DNA was extracted from embryonic tails so that transgenic fetuses could be determined using primers (\(\alpha\)2 - CTG ACC TGC AGT TAT GAG GAC 1094 T Cell Reactivity Altered by Positively Selecting Peptide Agonist

1 Abbreviations used in this paper: Av, adenovirus; \(\beta\)2m, \(\beta\)-2 microglobulin; FTOC, fetal thymic organ culture; HSA, heat stable antigen; LCMV-gp, lymphocytic choriomeningitis virus glycoprotein peptide.
Spontaneous release from peptide-coated MC57G target cells was <20% in all experiments.

Primary In Vitro Generation of Cytotoxicity. TCR-transgenic spleen cells (3 × 10^6/well) were cocultured with irradiated C57Bl/6J macrophages coated with p33, A4Y, or AV (10^-6, 10^-8 or 10^-10 M) at 37°C in IMDM, 10% FCS, 5 × 10^-5 2-ME, penicillin, and streptomycin. 3 d later these cultures were harvested and incubated with EL-4 target cells (H-2^d) that had been preincubated with peptides (10^-6 or 10^-8 M) for 3 h and pulsed with ^51Cr (Dupont NEN) for 1 h at 37°C. Pecite-specific lysis was determined using a standard 5-h chromium release assay. Spontaneous release from peptide-coated EL-4 target cells was <20% in all cases.

Proliferation Assays. Spleen cells (10^5/well) from TCR-transgenic or TCR-transgenic RAG2-/- mice were incubated in triplicate in 96-well flat-bottom plates with 2 × 10^4/well irradiated C57Bl/6J (H-2^d) macrophages that had been preincubated with various concentrations of peptide for 3 h at 37°C. After 48 h of cocultivation, the cells were pulsed with 1 μCi of [H]-thymidine (Amersham Corp., Arlington Heights, IL) for 16 h. Cells were harvested and counted on a direct beta counter (Matrix96; Canberra Packard Canada Ltd., Mississauga, Ontario, Canada).

GM-CSF/IL-3 Assay. Supernatant from TCR-transgenic spleen cells (10^5/well) cocultured with irradiated, peptide-coated C57Bl/6J (H-2^d) macrophages was collected and transferred to 96-well flat-bottom microtiter plates containing washed FDC-P1 cells (10^4/well) that had not received fresh medium containing IL-3 for 3–4 d. The cells were incubated for 24 h and then pulsed with 1 μCi of [H]-thymidine for 16 h at 37°C. Cells were harvested and counted on a Matrix96 direct beta counter. A standard curve was generated using serial dilutions of recombinant mouse IL-3 (Genzyme Corp., Cambridge, MA).

TCR Antagonist Assay. Irradiated C57Bl/6J macrophages (2 × 10^5/well) were preincubated with 10^-6 M p33 for 3 h at 37°C, after which the cells were washed three times and pulsed with serial dilutions of A4Y or S4Y (KAVSNFATM). These cells were incubated for another 3 h at 37°C, washed, and then cultured with TCR-transgenic spleen cells (10^5/well) at 37°C for 48 h. These cultures were then pulsed with 1 μCi of [H]-thymidine for 16 h, after which time the cells were harvested and counted on a Matrix96 direct beta counter.

FTOC Proliferation Assay. Cultured thymic lobes were teased apart and stained at 4°C in PBS containing 2% FCS with FITC-conjugated anti-CD8 (Cedarlane Laboratories Ltd.) and PE-conjugated anti-CD4 (Cedarlane Laboratories Ltd.). These cells were then sorted using a FACStarPlus instrument (Becton Dickinson & Co.) to collect CD8^+ thymocytes. Irradiated spleen cells from a C57Bl/6J mouse were preincubated with 10^-8 M AV, A4Y, or p33 for 3 h at 37°C, washed, and distributed in triplicate on a flat-bottom 96-well plate at a concentration of 10^5 cells/well. CD8^+ thymocytes (3 × 10^5/well) resuspended in IMDM, 10% FCS, penicillin, streptomycin, and 5 × 10^-5 M 2-ME were then added to these wells. The cells were cultured at 37°C for 4 d, pulsed with 1 μCi of [H]-thymidine for 16 h, and harvested as described.

Results

A Modified Peptide Containing a Single Alanine Substitution Mediates Efficient Positive Selection. To examine how peptides influence thymocyte selection, fetal thymic lobes from TCR β_m^-/- mice were cultured in the presence of β_m and various peptides containing a single alanine substitution of the strong peptide agonist, p33 (KAVYNFATM). One of the peptide variants, A4Y (KAVANFATM), was notable for its ability to efficiently induce TCR-transgenic thymocyte maturation. This was characterized by a skewed CD8^+ population that expressed high levels of the transgenic TCR as demonstrated by three color flow cytometry (Fig. 1 a). When TCR β_m^-/- fetal thymic lobes were incubated in vitro with exogenous β_m, few CD8^+ cells were detected, and these cells did not express high levels of the transgenic receptor. A control adenovirus (AV) peptide (SGPSNTTPPEI), which is known to efficiently bind to H-2D^b (34, 35) also did not induce maturation of the LCMV-specific TCR^b thymocytes. Three-color analysis of positively selected TCR^b thymocytes demonstrated that CD8^+ thymocytes expressed low levels of HSA, characteristic of mature thymocytes (36) (Fig. 1 b). As shown in Table 1, A4Y generated four to five times as many CD8^+ thymocytes compared with negative control FTOCs. In addition, the majority of CD8^+ thymocytes collected from AV-treated organ cultures stained HSA^+, indicating that these cells had not yet undergone positive selection (data not shown). These experiments demonstrate that the peptide A4Y positively selected the transgenic TCR with an efficiency comparable to wild-type TCR β_m^+ lobes cultured in media alone. Therefore, positive selection of the transgenic TCR is efficiently mediated by the altered peptide antigen A4Y.

Alterations at Position 4 Potentially Affects a TCR Contact Residue. To characterize this peptide, molecular models of A4Y and p33 bound in the groove of H-2D^b (30) were generated and compared. Based on the peptide sequences, it was predicted that the tyrosine amino acid side chain at position 4 was directed away from the MHC class I mole-

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Total cell number</th>
<th>CD8^+ cell number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR β_m^-/- (n = 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No peptide</td>
<td>7.5 ± 0.8 × 10^5</td>
<td>6.0 ± 0.6 × 10^4</td>
</tr>
<tr>
<td>AV (10^-6 M)</td>
<td>5.8 ± 0.7 × 10^5</td>
<td>5.2 ± 0.6 × 10^4</td>
</tr>
<tr>
<td>A4Y (10^-6 M)</td>
<td>7.8 ± 0.3 × 10^5</td>
<td>2.3 ± 0.1 × 10^5</td>
</tr>
<tr>
<td>TCR β_m^-/- (n = 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4Y (10^-4 M)</td>
<td>7.2 ± 1.4 × 10^5</td>
<td>2.2 ± 0.4 × 10^5</td>
</tr>
<tr>
<td>A4Y (10^-6 M)</td>
<td>6.3 ± 1.2 × 10^5</td>
<td>2.4 ± 0.4 × 10^5</td>
</tr>
<tr>
<td>A4Y (10^-8 M)</td>
<td>6.1 ± 0.8 × 10^5</td>
<td>1.7 ± 0.2 × 10^5</td>
</tr>
<tr>
<td>TCR β_m^+/- (n = 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No peptide</td>
<td>1.2 ± 0.3 × 10^6</td>
<td>3.2 ± 0.8 × 10^5</td>
</tr>
<tr>
<td>A4Y (10^-6 M)</td>
<td>9.0 ± 3.0 × 10^5</td>
<td>2.2 ± 0.7 × 10^5</td>
</tr>
<tr>
<td>p33 (10^-6 M)</td>
<td>1.0 ± 0.2 × 10^5</td>
<td>1.0 ± 0.2 × 10^4</td>
</tr>
</tbody>
</table>

*Data ± SD.

1 Predominantly immature CD8^+ HSA^b thymocytes.
strains isolated from TCR-transgenic mice. These virus variants escape the immune surveillance of the transgenic TCR by altering the p33-41 epitope at positions 3 and 4 (37). Therefore, the alanine substitution at this position is predicted to affect TCR–peptide interactions.

Previous experiments have shown that asparagine and methionine are anchor residues that bind to H-2D^b (38). Although these amino acids were not modified in A4Y, peptide binding to H-2D^b was tested using the murine lymphoma cell line RMA-S (39). RMA-S cells incubated with various concentrations of p33, A4Y, or control AV showed similar increases in H-2D^b staining (Fig. 2 b), dem-

Figure 1. Addition of A4Y results in efficient positive selection of transgenic thymocytes in TCR β^2m^-/- FTOC. (a) Three-color analysis of TCR β^2m^-/- thymic lobes cultured without peptide, AV (a control H-2Db-restricted adenovirus peptide) or A4Y were stained with antibodies specific for CD4, CD8, and Va2. CD8+ cells were gated, and the profiles of Va2 expression are shown. This experiment was repeated 10 times, producing similar results. (b) TCR β^2m++ and TCR β^2m-/- fetal thymic lobes cultured with A4Y were stained with antibodies specific for CD4, CD8, and HSA. HSA profiles are shown from gated CD4+CD8+ or CD8+ cells. These data are representative of four separate experiments.
this experiment was repeated four times. Similar results were obtained when this experiment was compared in several in vitro assays. To determine whether the transgenic TCIL could recognize A4Y, TCIL spleen cells were incubated with target cells pulsed with p33, A4Y, or AV (Fig. 3). Comparable specific lysis was seen in the presence of macrophages pulsed with low concentrations of p33 peptide (10^{-6} M). However, transgenic T cells cocultivated in the presence of various concentrations of A4Y were only able to weakly lyse targets expressing either p33 or A4Y. No specific lysis was detected using control cultures incubated with irrelevant peptide. Visual examination of cells cultured under these various conditions suggested that strong proliferation only occurred in the wells containing the peptide p33. These experiments show that both p33 and A4Y can initiate cytotoxic effector functions. However, the relatively limited cytotoxic response induced by A4Y-primed T cells suggests that this peptide did not interact with the transgenic TCR as efficiently as the wild-type peptide.

It is possible that A4Y could not induce optimal cytotoxicity because of a reduced ability to trigger the proliferation of naive transgenic T cells. Therefore, proliferation assays were done by cocultivating transgenic spleen cells with macrophages pulsed with various concentrations of different peptides (Fig. 5 a). A significantly stronger proliferative response was detected from T cells cultured in the presence of p33 compared with A4Y. Interestingly, A4Y induced similar levels of T cell activation relative to other alanine-substituted variants of p33 that were less efficient at promoting transgenic thymocyte maturation.

To confirm that these in vitro observations were specific for the transgenic TCR and not due to the expression of endogenous TCR-α chains, we performed a proliferation assay using splenocytes from TCR RAG2^{-/-} mice. Since these T cells do not express endogenous TCR-α chains, Fig. 5 b verifies that the observed results were in fact due to the transgenic TCR. These experiments show that A4Y can elicit a TCR-transgenic proliferative response, albeit not to the same extent as p33.

Cytokine assays were performed to further investigate A4Y's ability to stimulate TCR-transgenic T cell effector functions. As shown in Fig. 6, A4Y could induce GM-CSF/IL-3 production. Cytokine levels were reduced when compared with supernatant from p33-stimulated cultures; however, this reduction paralleled the previously observed decrease in proliferation. T cells cultured with a control peptide did not produce detectable levels of IL-3. Similar results were found when IL-2 production was analyzed (data not shown). This work demonstrates that A4Y in-

Figure 2. Peptide A4Y contains an alanine substitution that is likely to affect a TCR contact residue. (a) The peptides A4Y and p33 are shown as modeled in the binding groove of an H-2D^{b} molecule (side view). The TCR contact residues are oriented toward the top of the page. (Figure produced by MOLSCRIPT). (b) The ability of peptides to rescue H-2D^{b} surface expression on RMA-S cells was characterized by percentage increase in mean fluorescence relative to the control peptide, LCMV nucleoprotein 118-127 (H-2^{b} restricted).

Figure 3. Activated TCR-transgenic T cells recognize the peptides p33 and A4Y. The cytotoxic activity of LCMV-transgenic T cells was tested against target cells coated with p33 (■), A4Y (○), or AV (▲). These data are representative of CTL analysis from four mice.

Sebzdóa et al.

Dilution of Responder Cultures

Figure 4. Primary in vitro generation of cytotoxicity demonstrates that the A4Y agonist has a reduced ability to interact with the transgenic TCR. The cytotoxic activity of naive transgenic T cells cultured with p33 (A-G), A4Y (D-F), or AV (G-I) at concentrations of 10^{-6} (A, D, and G), 10^{-5} (B, E, and H), or 10^{-4} M (C, F, and I) were incubated with target cells coated with 10^{-6} or 10^{-8} M (solid and open symbols, respectively) p33 (■), A4Y (●), or AV (▲).

Figure 5. The peptide A4Y can activate mature T cells and induce reduced proliferation relative to p33. (a) The proliferative response of mature spleen cells from TCR-transgenic mice was measured when stimulated with macrophages pulsed with various concentrations of p33 (■) or the alanine-substituted variants A1K (▲), A3V (●), A4Y (□), A6F (♦), or A8T (○). Background proliferation for T cells incubated with macrophages coated with AV peptide was 600 cpm. Similar results were obtained when this experiment was repeated three times. (b) TCR-specific proliferation was assayed using TCR $^+$ RAG $^{-/-}$ splenocytes stimulated with macrophages that were prepulsed with 10^{-4} M p33 (solid bar), A4Y (white bar), or AV (shaded bar). Background proliferation was 2,000 cpm. Repetition of this experiment produced similar results.

Figure 6. The peptide A4Y can activate mature T cells and induce reduced proliferation relative to p33. (a) The proliferative response of mature spleen cells from TCR-transgenic mice was measured when stimulated with macrophages pulsed with various concentrations of p33 (■) or the alanine-substituted variants A1K (▲), A3V (●), A4Y (□), A6F (♦), or A8T (○). Background proliferation for T cells incubated with macrophages coated with AV peptide was 600 cpm. Similar results were obtained when this experiment was repeated three times. (b) TCR-specific proliferation was assayed using TCR $^+$ RAG $^{-/-}$ splenocytes stimulated with macrophages that were prepulsed with 10^{-4} M p33 (solid bar), A4Y (white bar), or AV (shaded bar). Background proliferation was 2,000 cpm. Repetition of this experiment produced similar results.

Figure 7. The peptide A4Y can activate mature T cells and induce reduced proliferation relative to p33. (a) The proliferative response of mature spleen cells from TCR-transgenic mice was measured when stimulated with macrophages pulsed with various concentrations of p33 (■) or the alanine-substituted variants A1K (▲), A3V (●), A4Y (□), A6F (♦), or A8T (○). Background proliferation for T cells incubated with macrophages coated with AV peptide was 600 cpm. Similar results were obtained when this experiment was repeated three times. (b) TCR-specific proliferation was assayed using TCR $^+$ RAG $^{-/-}$ splenocytes stimulated with macrophages that were prepulsed with 10^{-4} M p33 (solid bar), A4Y (white bar), or AV (shaded bar). Background proliferation was 2,000 cpm. Repetition of this experiment produced similar results.

Figure 8. Different Concentrations of A4Y Induce Positive Selection but Not Clonal Deletion of the Transgenic TCR. To determine whether different concentrations of A4Y could induce positive or negative selection, TCR $^{β_2m^{-/-}}$ fetal thymic lobes were cultured over a wide range of peptide concentrations (Fig. 8 a). TCR $^{β_2m^{-/-}}$ thymic lobes cultured in the presence of 10^{-4}-10^{-9} M A4Y led to efficient maturation of 33% (± 7\%, $n = 20$) CD8 $^+$ TCR $^+$ thymocytes. Lower concentrations of A4Y did not affect transgenic TCR $^+$ thymocyte maturation. Interestingly, clonal deletion could not be induced at any concentration using A4Y.
The presence of 10^{-6} M A4Y. In contrast, cocultivation in the presence of 10^{-6} M p33 led to reduced fetal thymic lobe cellularity and a few immature CD8+ cells expressing low levels of Vα2. Thus A4Y does not induce efficient clonal deletion of thymocytes expressing the transgenic TCR in β2m^{-/-} thymic lobes.

Functional Specificity of TCR-transgenic Thymocytes Is Altered in the Presence of A4Y. To examine whether the thymocytes that mature in fetal organ culture were tolerant or responsive to the peptide that promoted positive selection, proliferation assays were done. CD8+ thymocytes from TCR β2m+ thymic lobes selected in the presence of A4Y and TCR β2m^{-/-} thymic lobes were incubated with APC that were pulsed with p33, A4Y, or AV (Fig. 9). Although TCR β2m+ thymocytes proliferated in response to both A4Y and p33, thymocytes positively selected by A4Y could only mount a comparable proliferative response against p33. These results demonstrate that the functional specificity of thymocytes expressing the same TCR is altered depending on the selecting peptide.

Discussion

Properties of Positively Selecting Peptides. Using fetal thymic organ cultures, a variety of different peptides have been presented in suboptimal conditions (42, 43), or when T cells are unable to efficiently interact with Mls-1a (29, 44). These experiments argue that relatively less efficient TCIR interactions lead to reduced T cell stimulation and result in unresponsiveness instead of deletion (45). This interpretation is consistent with our findings. Since A4Y cannot induce a strong proliferative response as p33, this suggests that A4Y cannot engage the transgenic TCR as efficiently, and as a result cannot induce clonal deletion in FTOC.

Previous studies examining interactions that lead to clonal deletion have shown that antigens capable of activating mature T cells can clonally delete these thymocytes during ontogeny (46-49). Further studies have demonstrated that even antigens that are unable to activate peripheral T cells expressing a defined TCR can induce TCR-specific thymocyte clonal deletion (50, 51). In addition, experiments have shown that less antigen is required for clonal deletion directly implicated in thymocyte selection. More specifically, antagonists, partial agonists, and strong peptide agonists have been shown to promote T cell maturation. Because these peptides have strikingly different effects on mature T cells, the significance of these ligands during thymocyte ontogeny has remained controversial. In one instance, a strong agonist was shown to induce both positive and negative selection at different peptide concentrations (15, 16), suggesting that altered TCR–peptide–MHC avidity determined the fate of maturing T cells. On the other hand, it was found that high concentrations of peptide antagonists could induce positive selection (12, 13), implying that an altered TCR–peptide–MHC interaction was required for thymocyte maturation. Current experiments using the peptide A4Y suggest that the correlation between antagonists or partial agonists and positive selection is coincidental. A4Y is clearly an agonist since it can activate naive transgenic T cells and induce T cell effector functions. At the same time, this peptide can positively select thymocytes over a large concentration range, including the high peptide concentrations required for antagonist peptides. Since A4Y induces T cell effector functions and does not demonstrate any properties characteristic of a peptide antagonist, this work shows that agonists are capable of mediating positive selection. More importantly, agonists can promote thymocyte maturation at peptide concentrations that activate mature T cells in vitro.

Thymocyte Tolerance. Our studies have shown that high concentrations of A4Y (10^{-4} M) cannot induce clonal deletion of transgenic T cells in TCR β2m^{-/-} and TCR β2m^{+/+} fetal thymic organ cultures (Fig. 8 and data not shown). However, transgenic T cells that were positively selected in the presence of A4Y were unable to respond against this agonist in proliferation assays, in spite of the fact that these mature T cells could mount a response against the strong peptide agonist, p33. Therefore, these data suggest that transgenic thymocytes are not clonally deleted but rendered intolerant to A4Y.

Interactions in the thymus that lead to clonal unresponsiveness have not been well defined. Models using Mls-1a suggest that T cells become unresponsive when tolerogen is presented in suboptimal conditions (42, 43), or when T cells are unable to efficiently interact with Mls-1a (29, 44). These experiments argue that relatively less efficient TCR interactions lead to reduced T cell stimulation and result in unresponsiveness instead of deletion (45). This interpretation is consistent with our findings. Since A4Y cannot induce a strong proliferative response as p33, this suggests that A4Y cannot engage the transgenic TCR as efficiently, and as a result cannot induce clonal deletion in FTOC.

Interactions in the thymus that lead to clonal unresponsiveness have not been well defined. Models using Mls-1a suggest that T cells become unresponsive when tolerogen is presented in suboptimal conditions (42, 43), or when T cells are unable to efficiently interact with Mls-1a (29, 44). These experiments argue that relatively less efficient TCR interactions lead to reduced T cell stimulation and result in unresponsiveness instead of deletion (45). This interpretation is consistent with our findings. Since A4Y cannot induce a strong proliferative response as p33, this suggests that A4Y cannot engage the transgenic TCR as efficiently, and as a result cannot induce clonal deletion in FTOC.
than T cell activation (52, 53). One interpretation of these studies has been that the requisite interactions for clonal deletion of thymocytes are less stringent than those required for T cell activation. This hypothesis is attractive because it ensures that T cells with potential self-reactivity are eliminated during ontogeny, and consequently autoimmunity is avoided in the periphery.

Nonetheless, our results conflict with this view of thymocyte tolerance. Although A4Y can stimulate naive transgenic T cell effector functions, this peptide does not induce clonal deletion when cocultured with TCR β2m−/− or TCR β2m+/+ thymic lobes. It is possible that the avidity of thymocyte–stromal cell interactions dictates the form of negative selection imposed on the developing T cell. High avidity interactions lead to clonal deletion, whereas lower avidity interactions result in unresponsiveness. In this case, interactions with A4Y do not surpass an avidity required for clonal deletion. Instead, the transgenic thymocytes are positively selected and modified by the selecting ligand so that they no longer respond against A4Y.

Previous studies have shown that coreceptor downregulation may be one of the mechanisms used by thymocytes...
As a consequence, the T cells become unresponsive to fur-
peptides capable of mediating positive selection imprint a
given T cell receptor can respond against a variety of epitopes
ligands, and they are predicted to respond against unde-
fined, higher affinity peptides (29). This prediction is sup-
peptides cannot mediate positive selection of functional
whether tolerance to A4Y is imprinted by the thymic epi-
interactions have been altered.
other molecules contributing to the overall avidity of T cell
altered CD8 levels when compared with T cells from TC1L
thymocytes maturing in the presence of A4Y did not show
55), resulting in unresponsiveness instead of clonal dele-
tion. In our present experiments, analysis of TCR+CD8+
thymocytes from TCR βm−/−
thymic lobes cultured with A4Y (solid bar) or TCR βm+ thymic
lobes cultured in media alone (shaded bar) were cocultured
with peptide-coated APC. Background proliferation for TCR T
cells cultured with macrophages in the absence of peptide was
200 cpm. These results are representative of five experiments.
Figure 9. TCR+ thymocytes
selected in the presence of A4Y are tolerant to the positively se-
lecting ligand but proliferate in response to p33. TCR+ CD8+
thymocytes from TCR βm−/−
variants that possess strong agonist properties, it is possible
that assays testing TCR+CD8+ T cell function have not
used peptides exhibiting high enough affinity to surpass the
defined resting threshold. We believe that a subset of ago-
nist peptides can induce thymocyte differentiation and func-
tional reactivity while maintaining tolerance to selecting pep-

tides.

Models of Thymocyte Selection. Models of thymocyte de-
development have to explain how a TCR can discriminate
between a positively and negatively selecting ligand. In ad-
inclusion, these hypotheses must incorporate current data dem-
strating the contribution of peptides during these events.
To this extent, recent experiments have favored an efficacy
model of T cell maturation (18). In this case, efficacy is de-

defined as the ability of a ligand to catalyze TCR-mediated
biological activity. According to this model, a certain TCR–
peptide–MHC affinity threshold must be surpassed in order
for a thymocyte to be eligible for positive selection. Ligands
that meet these criteria can potentially determine whether
positive or negative selection occurs. Peptides that are un-
able to initiate T cell activation are predicted to promote
positive selection. In contrast, peptides that are capable of
provoking receptor-mediated activity (efficacy) induce nega-
tive selection. If this model is correct, then antagonist pep-
tides, which according to this hypothesis have no efficacy,
should positively select, and peptide agonists, which have
high efficacy, should negatively select maturing T cells.
Studies by Hogquist et al. (12, 13) and Jameson et al. (14)
support this hypothesis. However, current experiments us-
aging A4Y demonstrates that an agonist capable of inducing
TCR-mediated activity can positively select thymocytes.
These findings conflict with a simple efficacy model of thy-
mocyte selection.

A related developmental model postulates that positive
selection is the result of incomplete TCR signaling (3, 22).
This hypothesis proposes that extensive TCR–peptide–MHC
cross-linking without suitable conformational change gen-
erates incomplete signaling and lack of T cell activation.
Antagonist peptides have been postulated to interact with T
cells in such a manner and induce positive selection. In ad-
inclusion, induction of conformational change without ex-
tensive cross-linking would provide too weak a signal to acti-
ate thymocytes, thus providing an explanation as to how
low concentrations of agonist peptides such as p33 posi-
tively select. Frequent binding of activating agonist pep-
tides would result in clonal deletion. However, current ex-
periments are not consistent with this model. Instead, high
concentrations of A4Y, which should induce an agonist-
like conformational change, positively selects transgenic thy-
mocytes. Therefore, a conformational model that relies on
incomplete TCR signaling to induce positive selection cannot
explain current results.

Alternatively, these data may be interpreted in terms of
an affinity/avidity model of T cell maturation (17). Like the
efficacy hypothesis, this model assumes that a thymocyte
must have adequate avidity for peptide–MHC to be posi-

tively selected.
tively selected. However, an affinity/avidity model does not limit positively selecting ligands to antagonist or partial agonist peptides. For instance, different concentrations of A4Y, ranging from 10^{-9} to 10^{-4} M, can interact with transgenic TCRs and provide sufficient stimulation to induce positive selection. However, if the only role of a positively selecting peptide is to contribute to TCR-peptide-MHC affinity, then other peptides with the ability to induce similar T cell responses should promote similar levels of thymocyte maturation. This does not seem to be the case. Alanine-substituted variants of the wild-type peptide that produce comparable levels of proliferation relative to A4Y (Fig. 5 a) were not nearly as efficient as A4Y at promoting transgenic T cell maturation. Although the affinity between the TCR and ligands has not been directly measured, our results suggest that A4Y has an undefined, intrinsic capacity to positively select transgenic thymocytes that cannot be fully explained using an affinity/avidity model.

If positively selecting peptides have an intrinsic quality, then current experiments demonstrate that this attribute is not confined to antagonists or partial agonists. There is no direct correlation between a peptide’s ability to positively select thymocytes and its ability to activate mature T cells. Instead, our data suggest that positively selecting ligands are made up of a distinct subset of peptides that are able to generate unique interactions with the TCR. Peptides that meet a basic requirement, be it a distinct conformational change or a novel form of TCR stimulation, positively select thymocytes. In addition, experiments using various concentrations of the high affinity peptide p33 show that there must be some signaling gradient that directly or indirectly reflects thymocyte-stromal cell avidity. For this reason, we propose that peptides that are capable of unique TCR interactions induce positive selection. Thymocytes that are positively selected by these peptides are modified such that they remain tolerant against these ligands. This “resting threshold” may also be altered during intermediate avidity interactions that are independent of positive selection (29). However to maintain this resting threshold, continual TCR-peptide/MHC interactions may be required. Higher avidity interactions push these thymocytes toward clonal deletion. As a result, mature T cells that have undergone this selection process are unresponsive to self peptides encountered during development and yet are capable of responding against higher affinity foreign peptides in the periphery.

Although previous models have incorporated ideas of dynamic T cell reactivity and variable activation thresholds (63, 64), these concepts have not been supported by solid experimental evidence. Our results suggest that a T cell’s “resting state” is fine tuned during positive and negative selection events in the thymus. It remains to be determined whether this process involves modification of thymocyte avidity or modulation of an intrinsic biochemical pathway.

We thank D. Bouchard for cell sorting and J.C. Zúñiga-Pflücker, V.A. Wallace, J. Penninger, and J.R. Carlisle for critically reading the manuscript.

This work was supported by the Medical Research Council (MRC) of Canada. P.S. Ohashi is a recipient of an MRC Scholarship.

Address correspondence to Pamela S. Ohashi, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.

Received for publication 5 September 1995 and in revised form 8 November 1995.

References

10. Sloan-Lancaster, J., B. Evavold, and P.M. Allen. 1993. In-

