A Novel Antigen-processing-defective Phenotype in Major Histocompatibility Complex Class II-positive CIITA Transfectants Is Corrected by Interferon-γ

By Claire-Anne Siegrist, Eduardo Martinez-Soria, Ilse Kern, and Bernard Mach

From the L. Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva 4, Switzerland

Summary

Presentation of exogenous protein antigens to T lymphocytes is based on the intersection of two complex pathways: (a) synthesis, assembly, and transport of major histocompatibility complex (MHC) class II-invariant chain complexes from the endoplasmic reticulum to a specialized endosomal compartment, and (b) endocytosis, denaturation, and proteolysis of antigens followed by loading of antigenic peptides onto newly synthesized MHC class II molecules. It is believed that expression of MHC class II heterodimers, invariant chain and human leukocyte antigen-DM is both necessary and sufficient to reconstitute a functional MHC class II loading compartment in antigen-presenting cells. Expression of each of these essential molecules is under the control of the MHC class II transactivator CIITA. Unexpectedly, however, whereas interferon γ stimulation does confer effective antigen-processing function to nonprofessional antigen presenting cells, such as melanoma cells, expression of the CIITA transactivator alone is not sufficient. Activation of antigen-specific T cells thus requires additional CIITA-independent factor(s), and such factor(s) can be induced by interferon γ.

Materials and Methods

Cells and Culture Conditions. Human melanoma cells Me67 and Me208 were grown in RPMI-1640 medium complemented with glutamine, 10% heat-inactivated (56°C) FCS, and antibiotics. Cells were incubated at 37°C in 5% CO₂ and maintained in a logarithmic growth phase with a viability >98% at all steps. For MHC class II induction, cells were incubated with human rIFN-γ (specific activity = 1.4 × 10⁷ U/mg; gift from Biogen Inc., Cambridge, MA) at 500 U/ml for 24 or 48 h, as indicated in figure legends.

Transfections. Melanoma cell lines were transfected by calcium phosphate precipitation followed 4 h later by a glycerol shock with either the expression vector EBO-Sfi alone or a full-length CIITA cDNA cloned into EBO-Sfi under control of SV40 promoter (1, 2). Stable transfectants were generated by selection with hygromycin B (Calbiochem Corp., La Jolla, CA) and maintained in culture with hygromycin throughout the study, including during IFN-γ induction.

Surface MHC Class II Expression. Duplicate samples of 2 × 10⁵ cells were washed, preadsorbed with 10% normal rabbit serum (NRS), incubated with NRS or relevant antibodies followed by fluorescein-conjugated rabbit anti-mouse IgG (SeroTec Ltd., Oxford, UK), washed, and analyzed by flow cytometry on a FACScan® analyzer (Becton Dickinson & Co., Mountain View, CA). 10,000 cells were analyzed for each determination.

1 Abbreviations used in this paper: HA, hemagglutinin; Ii, invariant chain; NRS, normal rabbit serum; OVN, overnight.
Expanded Tcell lines were frozen in culture medium-DMSO for autoradiography. Samples were separated on 10.5% polyacrylamide gels bound to protein A-Sepharose beads, for 4 h at 4°C. Cell extracts move nonspecifically bound material. Class II molecules were lysed with 1% NP-40 detergent (5). Insoluble material was removed by centrifugation at 100,000 g for 30 min. Cell extracts were incubated three times for 2 h at 4°C with protein A-Sepharose 4 Fast Flow beads (Pharmacia, Uppsala, Sweden) under rotation to remove nonspecifically bound material. Class II molecules were then immunoprecipitated by using mAb D1.12, previously bound to protein A-Sepharose beads, for 4 h at 4°C. Cell extracts were then washed three times in cold PBS before lysis for 20 min at 4°C in 1 ml of Tris-buffered saline containing 1% NP-40 detergent (5). Insoluble material was removed by centrifugation at 100,000 g for 30 min. Cell extracts were incubated with a large excess of nonbiotinylated HA peptide. After washing, cells were incubated with 500 U/ml of IFN-γ for 24 h before washing and coculture with T cells. The proliferative response of tetanus-specific T cell lines (2 X 10⁴ cells/well) as described (6). RPMI-1640 supplemented with 15% human AB+ serum from male volunteer donors was used as culture medium. T cell lines were restimulated with p2 or p4 peptides, in IL-2-supplemented culture medium. Expanded T cell lines were frozen in culture medium-DMSO 10% and stored in liquid nitrogen.

Antigen Presentation to T Cells. Melanoma cells (10⁶) were incubated for 16 h with various concentrations of tetanus fragments Tet3 (tt 744-1315, reference 7), C (Fr-C, tt 865-1315), B (Fr-B, tt 8-664), or medium alone, fixed with 0.2% paraformaldehyde, washed, and used as APC (3 X 10⁹ cells/well) in coculture with tetanus-specific T cell lines (2 X 10⁴ cells/well) as described (6). Alternatively, melanoma cells were fixed and preincubated with various concentrations of tetanus p4 or p2 synthetic peptides before washing and coculture with T cells. The proliferative response of tetanus-specific T cell lines was measured after 48 h by [³H]thymidine incorporation as described (6).

Peptide Binding. Binding assays were performed as described (8). Briefly, 3 X 10⁶ melanoma cells, either CIITA transfected or IFN-γ-treated, were incubated at 37°C for 4 h with various concentrations of a biotinylated peptide (HA 307-319) of influenza hemagglutinin (HA) (9) or medium alone. In competition experiments, cells were first incubated with a large excess of nonbiotinylated HA peptide. After washing, cells were incubated with FITC-streptavidin 4.22 μg/ml, Calbiochem Corp., at 4°C for 30 min. Stained cells were washed again and analyzed by flow cytometry as described above.

Results

Antigen Presentation Function of CIITA Transfectants. CIITA-transfected or IFN-γ-treated Me67 and Me208 melanoma cells were first compared by indirect immuno-
Me208 cells that were either CIITA transfected or preincu-
bated with 500 U/ml of IFN-γ for 24 h were incubated
overnight (OVN) with 10 μg/ml of tetanus fragment Tet
3, fixed, and used as APC in coculture with the tetanus-
specific T-19 T cell line (Fig. 1 B). This T cell line, specific
for the p2 peptide of tetanus toxin (tt 830-843), is restricted
by the DRB1*11 and DRB1*08 alleles (6). IFN-γ induc-
tion of MHC class II molecules readily conferred to Me208
melanoma cells expressing DRB1*1101/04 alleles (oligo-
typing, data not shown) the capacity to activate T-19 lym-
phocytes. In contrast, CIITA-transfected Me208 expressing
similar amounts of MHC class II molecules (Fig. 1 A) were
unable to activate the T-19 cell line. This dramatic differ-
ence in antigen presentation capacity between IFN-γ-
induced and CIITA-transfected cells was also observed un-
der similar conditions with a different melanoma cell line
(Me67, DRB1*1301/04, DRB3*0101) presenting a different
epitope (peptide p4, tt 1273-1284) to a T cell line restricted
by a different HLA molecule, the DRB3*0101-restricted
T-87 cell line (Fig. 1 C).

In contrast, when the same CIITA-transfected mel-
noma cells unable to process and present native tetanus
protein antigen to T cells were incubated with various con-
centrations of synthetic tetanus peptides, a dose-dependent
peptide-specific DR-restricted activation of T cell lines was
induced (Fig. 1 D). Thus, CIITA transfection of class II-
negative melanoma cells induces a normal expression of
surface MHC class II molecules that are able to bind and
present exogenous peptides to specific, DR-restricted T
cells. Curiously, however, it creates an antigen-processing-
deficient phenotype.

Stability of MHC Class II Dimers in CIITA Transfectants.
The description of HLA-DM mutant B cell lines character-
ized by impaired processing of exogenous native antigens,
loss of MHC class II SDS stability at room temperature,
and expression of distinct MHC class II conformational
epitopes (10-14) prompted us to first address the possibility
of a similar phenotype in CIITA transfectants. To analyze
the SDS stability of their class II dimers, CIITA-transfected
or IFN-γ-treated Me67 cells were labeled with [35S]me-
thionine before immunoprecipitation of MHC class It
molecules with mAb D1.12. Samples resuspended in 2%
SDS buffer were split into two portions, one of which was
boiled for 5 min and one of which was left at room tem-
perature for 30 min before electrophoresis (Fig. 2 A). Im-
munoprecipitation of newly synthesized HLA-DR mole-
cules in either CIITA-transfected or IFN-γ-treated Me67
cells demonstrated (a) a similar rate of HLA-DR biosynthe-
sis and associated Ii, and (b) a similar pattern of SDS stability
of class II dimers. Thus, in contrast to what was observed in
HLA-DM–mutant B cell lines, the antigen-processing de-
fect of CIITA transfectants does not prevent the formation
of SDS-stable class II dimers.

The induction of both HLA-DM and Ii chains by CIITA
transfection has been documented (15, 16) in all cell types
examined, and specifically confirmed in the melanoma cell
lines used in this study. In the CIITA-transfected or IFN-
γ-treated Me67 melanoma cells, the steady-state mRNA
ratio of HLA-DR/Ii/DM is strictly conserved quantita-
tively (RNase protection analysis, data not shown). In
terms of intracellular localization of HLA-DR molecules,
no differences were observed by confocal microscopy be-
tween CIITA-transfected or IFN-γ-treated Me67 cells
(data not shown).

Surface Conformation of MHC Class II Molecules. The
altered conformation of surface MHC class II molecules has
been described as another phenotypic feature of antigen-
processing–deficient mutants (17–19). Surface MHC class
II conformation was therefore studied in CIITA-transfected
or IFN-γ-treated Me67 cells expressing strictly similar
amounts of MHC class II molecules when stained with
molecules induced at the surface of the same cell lines by CIITA transfection or by IFN-γ stimulation indicated that these molecules, present in similar amounts, adopt different surface conformations. These different conformations could well reflect the intracellular binding of different sets of peptides by MHC class II molecules synthesized under both conditions.

Peptide-binding Capacities of Surface MHC Class II Molecules. The adherent phenotype and relatively stringent culture requirements of our melanoma cell lines did not allow culture of a number of cells sufficient for direct elution of MHC class II bound peptides. Nevertheless, to explore the possibility that different sets of peptides could be present within the groove of surface class II dimers in the two conditions, we assessed the capacity of surface class II molecules to bind an exogenously provided synthetic peptide. CIITA-transfected or IFN-γ-induced Me67 cells expressing similar levels of surface class II molecules (Fig. 3, 1 and 5) were incubated with a biotinylated influenza peptide (HA307–312) known to bind to HLA-DR4 (9) before addition of FITC-streptavidin and analysis by flow cytometry. Surprisingly, the patterns of fluorescence observed were markedly different. Whereas little binding above autofluorescence was detected for IFN-γ-treated cells, which is consistent with binding by <2% of surface class I molecules, Fig. 3 shows a strong, dose-dependent increase of fluorescence of CIITA transfectants. Competition experiments in which cells were first incubated with a 10X excess of nonbiotinylated peptide (Fig. 3, 4 and 8), as well as blocking experiments with MHC class II-specific antibodies (data not shown), confirmed the specificity of the fluorescence. Thus, the distinct conformation of MHC class II molecules expressed at the surface of CIITA-transfected melanoma cells correlates with an increased peptide-binding capacity when compared with class II dimers of IFN-γ-treated cells.

Correction of the Antigen-processing Defect of CIITA Transfectants by IFN-γ. The fact that IFN-γ induction was able to confer antigen-processing capacity to melanoma cells, whereas CIITA transfection was not, suggested that the processing defect of CIITA transfectants could result from the lack of expression of other IFN-γ-inducible essential factor(s). The effect of IFN-γ on the antigen-processing ability of CIITA transfectants was therefore studied. Time course experiments, where CIITA-transfected Me67 cells were incubated with IFN-γ for various periods of time before incubation with antigen and specific T cell lines, demonstrated IFN-γ-dependent restoration of tetanus toxoid presentation by CIITA transfectants (Fig. 4). This was not accompanied by an increase in cell surface HLA-DR expression (data not shown). A similar restoration of antigen presentation was obtained with T cell lines specific for other tetanus toxoid epitopes, restricted by different HLA-DR alleles, and with the Me208 melanoma cell line (data not shown). These results demonstrate that additional factor(s) induced by IFN-γ, but not under the control of CIITA, are absolutely required to confer antigen-processing capacity to these nonprofessional APCs.
APC induce the expression of MHC class I molecules, phocytes. Thus, CIITA transfection of these nonprofessional anoma cell lines provided with the antigen in the form of the results with protein antigens, CIITA-transfected mel- ble (CIITA transfection) of presentation of a protein antigen. melanoma cells are either capable (IFN-γ treatment) or incapable for the antigen-processing defect of CIITA transfectants.

Discussion

Although expressing similar levels of surface HLA-DR molecules and synthesizing HLA-DR at similar rates, melanoma cells are either capable (IFN-γ treatment) or incapable (CIITA transfection) of presentation of a protein antigen to the relevant T lymphocytes (Fig. 1). In contrast to these results with protein antigens, CIITA-transfected melanoma cell lines provided with the antigen in the form of exogenous synthetic peptides readily activate specific T lymphocytes. Thus, CIITA transfection of these nonprofessional APC induces the expression of MHC class II molecules, confers the capacity of presenting short exogenous peptides to T cells, but generates a cell phenotype that is defective in antigen processing and presentation of native antigens. This unusual functional phenotype, which differs from that of the same cell line after stimulation by IFN-γ, suggests that antigen processing by nonprofessional APC such as melanomas involves yet an additional level of complexity that is not under the control of the MHC class II transactivator CIITA.

Studies of HLA-DM–mutant B cell lines have identified a special phenotype of APC characterized by impaired processing of some exogenous antigens. Consequently, the phenotypical features characteristic of HLA-DM mutants were studied in CIITA-transfected melanoma cells. Immuno precipitation of newly synthesized HLA-DR molecules in CIITA-transfected and IFN-γ–induced cells demonstrated a similar pattern of SDS stability of class II dimers (Fig. 2A). We conclude that, contrary to the situation of the HLA-DM mutants, the antigen-processing defect of CIITA transfectants does not prevent the formation of SDS-stable class II dimers. The recent demonstration that the formation of class II SDS-stable dimers requires both li and DM expression (20) also argues for a distinct mechanism responsible for the antigen-processing defects of CIITA transfectants and HLA-DM mutants. In addition, induction of both HLA-DM and li mRNA upon CIITA transfection has been demonstrated (15, 16). Since trace amounts of DM are reported sufficient to stabilize MHC class II molecules (20), and since the DR/li/DM mRNA ratio is identical in CIITA-transfected and IFN-γ–induced cells, these factors known to be involved in class II–restricted antigen presentation do not seem to be responsible for the antigen-processing defect observed in CIITA transfectants.

MHC class II molecules expressed on certain processing-defective B cell mutants were shown to exhibit special conformational determinants that can be distinguished by certain mAbs (17–19). This characteristic feature is also present in antigen-processing–deficient CIITA transfectants, whose surface MHC class II dimers exhibit a different conformation when compared with class II molecules expressed after IFN-γ induction. In the case of HLA-DM–deficient mutant B cell lines, as in CIITA transfectants, the loss of a few conformational epitopes present on normal cells has been observed. In our search for mAbs able to distinguish specific conformational determinants, we also identified mAbs that recognized MHC class II molecules better or exclusively on antigen-processing–deficient cells (Fig. 2B). No direct correlation was found across HLA haplotypes between expression of a given epitope and antigen-processing capacity. Thus, the change in class II conformation that is associated with the antigen-processing defect of CIITA transfectants resulted either in enhanced or in reduced recognition by specific mAbs. Altogether, these analyses suggest, as was described for murine intestinal cells (21) and thymic medulla epithelial cells (22), that the conformation of MHC class II molecules at the cell surface reflects the set of peptides bound within their groove, and thus indirectly the integrity of the antigen-processing pathway. In the case of nonprofessional APC, such as melanomas the demonstration of a distinct structural phenotype appears to correlate with antigen-processing capacity better than SDS stability of class II dimers.

The structural differences of surface class II MHC molecules expressed on CIITA transfectants were further substantiated by the demonstration of a very different capacity for peptide binding. It was indeed of interest to observe a stronger binding of an influenza-derived biotinylated peptide to class II molecules expressed at the surface of CIITA-transfected versus IFN-γ–treated melanoma cells (Fig. 3). Given the similar density of MHC class II molecules expressed under both conditions, this observation strongly suggests an increased avidity of MHC class II dimers of CIITA transfectants for exogenous peptides. The expression of stable MHC class II molecules with distinct conformations and enhanced binding capacity for peptides suggests that MHC class II molecules synthesized in CIITA transfectants do encounter and bind different sets of peptides on their way to the cell surface.

The fact that IFN-γ can correct the antigen-processing–defective phenotype of CIITA-transfected melanomas is important (Fig. 4). It means that in addition to the genes regulated by CIITA (i.e., MHC class II, HLA-DM, and li), one or more other IFN-γ–induced genes are required for antigen processing in some nonprofessional APC. This is in contrast to what is observed in various mutant B cell lines, where antigen-processing defects can be restored simply by expression of MHC class II, HLA-DM, and li (11, 12, 14). We thus suggest that these essential additional factors are
not constitutively expressed in nonprofessional APC such as melanomas and that they require cytokine induction. In these nonprofessional APC, it has been reported that the presence of HLA-DM and the Ii chain is sufficient to allow MHC class II molecules to reach the appropriate peptide-loading compartment (20).

It follows that additional distinct steps should be considered as candidates for the essential IFN-γ-inducible, CIITA-independent function required for antigen presentation. Endocytosis does not seem to be involved since kinetic analysis of fluid-phase endocytosis through flow cytometry (23) indicated an identical level of Lucifer yellow uptake for both untreated (processing-defective) and IFN-γ-treated (processing-competent) CIITA-transfected cells (data not shown). Interestingly, there is recent evidence that IFN-γ induces endosomal and lysosomal proteases, such as cathepsin D and B (24–26), which are involved in the processing of endocytosed proteins, including tetanus toxin (27). Thus, the modulation by IFN-γ of the activity or localization of specific proteases could influence the nature of the peptides generated and/or loaded onto MHC class II molecules.

We propose that effective processing and presentation of exogenous antigens by melanoma-like nonprofessional APC not only requires the expression of the various genes controlled by the transactivator CIITA (namely, MHC class II genes, HLA-DM, and the Ii gene), but also depends on the induction, by IFN-γ, of other factors required for processing of protein antigens. Whether these factors result in subtle modifications in postendocytic trafficking steps, in the availability or activity of specific proteases, or in other yet unknown protein–protein interactions is now open for study (Fig. 5). The demonstration that antigen–processing–defective cells of any desired HLA-DR haplotype can be obtained simply by CIITA transfection of nonprofessional APC should now greatly facilitate the search for these factors.

Whatever the exact mechanism, this observation could have practical implications in the field of cancer immunotherapy: transfection of the CIITA gene is indeed considered a way to convert tumor cells into efficient MHC class II-positive APC. This way might not be sufficient for induction of T cells that are specific for tumor antigens. Furthermore, the identification of an additional requirement for antigen processing by nonprofessional APC that express MHC class II molecules, and its control by IFN-γ, appears important in terms of the physiological regulation of immune responses. Indeed, the inability of nonprofessional APC throughout the body to adequately process exogenous antigens would limit the risk of inducing immune responses to numerous environmental antigens. As a significant example, enterocytes have been shown to constitutively express MHC class II molecules of abnormal conformation and to be defective in T cell activation (21). In contrast, in the context of local inflammation, cytokines released in the microenvironment would simultaneously activate MHC class II expression and antigen-processing mechanisms, thus resulting in effective antigen presentation.

We thank V. Steimle for providing CIITA-expressing plasmids and helpful discussion, and J. L. Carpentier for confocal microscopy analysis. We are grateful to S. Carrell, G. P. Corradin, C. Irlik, J. Lamb, P. Hadams, and R. Acolla for providing melanoma cells, tetanus toxin antigens and peptides, and mAbs.

This work was funded by grants from the Swiss National Foundation and the L. Jeantet Foundation.

Address correspondence to Bernard Mach, L. Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, CMU, 9 Ave. de Champel, 1211 Geneva 4, Switzerland.

Received for publication 23 May 1995 and in revised form 3 August 1995.

References
4. Flomenberg, N., R. Plátke, J. Zemmour, T.N. Small, and


