












Figure 6. Anti-B7-1 treatment only induces insulitis in genetically susceptible strains of mice. NOD and B6 mice were treated with either anti-B7-1 
(16-10A1) or a Ctlg beginning at 2 wk of age as described in Materials and Methods. Representative H&E sections of 12-wk-old mice are shown. 
(a) Ctlg-treated B6, (b) anti-B7-1-treated B6, (c) Ctlg-treated NOD, and (d) anti-B7-1-treated NOD. x200. 

inability of CTLA4Ig to block the development of diabetes 
when administered late in the disease process differs from the 
observations of Finck et al. (53) that late treatment could 
suppress an active autoimmune response in a model for mu- 
rine lupus. This difference may be due to the more predomi- 
nant role of antibodies in the lupus model or a difference 
in reagents, since in these studies only murine and not human 
CTLA4Ig had a beneficial effect. 

While both CTLA4Ig and anti-B7-2 mAb treatment were 
able to decrease the incidence of diabetes, they had little effect 

Figure 7. Phenotypic analysis of]ymphocytes infiltrating the pancreas 
of treated animals. T cells isolated from either the spleen or pancreas of 

11-13-wk-old treated mice were analyzed for surface expression of CD69 
by FACS | analysis. The percentage of control mean fluorescence = (MFI 
of treatment group/MFI of control group) x 100. The MFI for the control- 
treated animals are female splenic T cells = 3.39, female pancreatic T cells 
= 10.85, and male pancreatic T cells = 4.79. Each group is composed 
of five mice, and the data are representative of two experiments. 
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on the occurrence of insulitis. CTLA4Ig- and anti-B7-2-treated 
animals developed an equivalent lymphocytic infiltrate to that 
of Ctlg-treated animals, so that by 12 wk of age, the mean 
clinical scores were essentially equivalent. Similar results were 
also obtained in treated male mice, although a significant de- 
gree of infiltration (>40% of the islets) was not detected until 
12 wk of age (data not shown). Isolation of the lymphocytes 
infiltrating the pancreas demonstrated that equivalent numbers 
of T cells (CD4 and CDS) and B cells were present in all 
three groups. Moreover, the degree of T cell activation, as 
assessed by the expression of CD69, was equivalent in the 
Ctlg-, CTLA4Ig-, and anti-B7-2-treated groups. Therefore, 
quantitatively, the infiltrate appears to be quite similar be- 
tween Ctlg-treated animals that develop disease and CTLA4Ig- 
or anti-B7-2-treated animals that do not. However, qualita- 
tive differences in the infiltrate may exist. One possibility is 
that the interruption of critical interactions between CD28 
and its costimulatory ligands may result in the induction of 
anergy to islet antigens such as GAD65. These antigens have 
been shown to play an important role in the early phase of 
the development of disease (11, 12). Alternatively, CTLA4Ig 
and anti-B7-2 treatment may inhibit disease, not by inducing 
anergy to these islet antigens, but by altering the balance of 
Thl and Th2 cells that infiltrate the islets and respond to 
the autoantigens (54). In fact, recent data from Kuchroo et 
al. (54a) have suggested that the in vivo functional effects 
of anti-B7-2 mAbs in an experimental autoimmune en- 
cephalomyelitis (EAE) model are a result of changes in the 
balance of Thl  and Th2 subsets in these animals. 

While anti-B7-2 treatment inhibited diabetes development 
in NOD mice, its effects were not as profound as CTLA4Ig 
treatment. This could be due to the differences in affinity 
of the mAb and CTLA4Ig for B7-2 or CTLA4Ig's ability 
to bind to alternative ligands, such as B7-1. Therefore, NOD 
mice were treated with either a combination of anti-B7-1 plus 
anti-B7-2 mAbs or anti-B7-1 alone. In contrast to the im- 
munosuppression of NOD disease observed after anti-B7-2 
or CTLA4Ig therapy, treatment of NOD mice with anti- 
B7-1 mAbs at the onset of insulitis resulted in a more severe 
infiltrate and a rapid onset of disease in both male and female 
mice. This effect was observed with two different anti-B7-1 
mAbs, 16-10A1 and 1G10, even though 1G10 has a 40-fold 
lower avidity for B7-1 than does 16-10A1 (33). Unlike the 
CTLA4Ig or anti-B7-2 treatment, which had little effect on 
the development of insulitis, the treatment of NOD mice 
with anti-B7-1 mAbs resulted in a more severe and rapid onset 
of insulitis. Furthermore, the T ceils isolated from the anti- 
B7-1-treated female and male mice expressed higher levels 
of CD69, indicating they were more highly activated than 
T ceils isolated from the other treatment groups. 

These results indicate that B7-1 plays a direct role in con- 
trolling this autoimmune response by directly signaling 
through the B7-1 molecule, interrupting a critical interac- 
tion between B7-1 and one of its ligands, or interacting with 
a distinct population of APC during the development of dis- 
ease. Interestingly, transfectants of both B7-1 and B7-2 are 
capable of providing the necessary costimulatory signals to 

the T cell (37-39). However, differences in both the expres- 
sion and function of these two molecules have been observed. 
The expression orB7-2 occurs much more rapidly than B7-1 
after B cell activation (33, 41). Furthermore, Ig cross-linking 
only induces significant levels of B7-2 and not B7-1 (40). Thus, 
it is possible that B7-2 is expressed on APC essential for ini- 
tiating full-blown diabetes, while B7-1 is expressed on cells 
that regulate the development of insulitis. For instance, B7-1 
is expressed on activated T cells (55). Thus, the anti-B7-1 
mAb might deliver a signal to the T cells that alters effector 
cell function, such as lymphokine production, resulting in 
a potential shift in the balance of Thl  and Th2 subsets. Al- 
ternatively, the interaction of the anti-B7-1 mAb with con- 
ventional APC could increase the antigen presentation or 
costimulation capabilities of the cells, resulting in a more po- 
tent T cell response. Finally, anti-B7-1 treatment may mediate 
its effects by blocking the interaction of B7-1 with one of 
its counter-receptors, CTLA-4 (43). Recent data from our 
laboratory suggest that the signals delivered to the T cell by 
CD28 and CTLA-4 may be different. F(ab) fragments of anti- 
CTLA-4 antibodies augment T cell proliferation in an 
allogeneic MLK by blocking an off signal presumably deliv- 
ered by a CTLA-4 ligand (42). These results suggest the pos- 
sibility that while the CD28 molecule provides important 
costimulatory signals to the T cell, CTLA-4/B7-1 interac- 
tions may actually function to dowrtregnlate an immune 
response. The interruption of such a negative signal by anti- 
B7-1 mAbs would prevent the downregulation of an autoim- 
mune response and result in a more severe disease. 

Despite the ability of anti-B7-2 mAb to inhibit costimula- 
tion and prevent diabetes, a combination of anti-B7-1 and 
anti-B7-2 mAbs increased the onset of diabetes in both fe- 
male and male mice (data not shown), similar to anti-B7-1 
mAb treatment alone. These results raise the possibility that 
B7-1 and B7-2 function at different time points during the 
development and propagation of this autoimmune response. 
In this regard, there is good evidence that this disease progresses 
in at least two stages (56). The first event results in the devel- 
opment of insulitis, and later events are responsible for the 
progression to full-blown diabetes. While both CTLA4Ig 
and anti-B7-2 treatment inhibited the development of dia- 
betes, neither treatment prevented the occurrence of insu- 
litis. Furthermore, animals not receiving the additional three 
doses at weeks 6, 7, and 8 were not protected from developing 
diabetes (data not shown). Together, these results suggest 
that anti-B7-2 and CTLA4Ig treatment act late in disease 
development. In contrast, anti-B7-1 mAbs increased both the 
rate and severity of insulitis, and the additional three doses 
at weeks 6, 7, and 8 were not necessary for exacerbation of 
disease (data not shown), suggesting that this therapy altered 
the initial stages of the disease process. There are several pos- 
sible explanations for the exacerbation of disease observed with 
a combination of anti-B7-1 and anti-B7-2 mAbs. First, it is 
possible that the initial activation event may be CD28 inde- 
pendent. If this is the case, then this event would rely on 
alternative costimulatory pathways and would therefore not 
be affected by blockade of the CD28 ligands, B7-1 or B7-2. 
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In this regard, it is interesting to note that early alloantigen 
responses are largely unaltered in vivo or in vitro in CD28- 
deficient mice (57). By comparison, the later events of dis- 
ease progression would appear to be exclusively CD28 
dependent. Alternatively, all of the stages of autoimmune di- 
abetes may be CD28 dependent, and the initiation of treat- 
ment at 2 wk of age is not early enough to prevent the de- 
velopment of insulitis, but would inhibit the later events 
responsible for disease progression. In either case, autoreac- 
tive T cells would be activated and express both CTLA-4 
and B7-1. Therefore, the exacerbation of disease mediated by 
the anti-B7-1 mAb would dominate the inhibitory effects of 
anti-B7-2 treatment by either directly signaling through the 
B7-1 molecule or interrupting a critical interaction respon- 
sible for shutting down the immune response. Future experi- 
ments with Fab and F(ab)~ fragments of the anti-B7-1 and 
anti-B7-2 mAbs, as well as genetically altered B7-1 and B7-2 
knockout mice, will allow us to determine the mechanism 
by which B7-1 treatment exacerbates disease. 

Finally, these observations do not appear to be restricted 
to the NOD autoimmune mouse model. Preliminary studies 
performed in collaboration with Dr. Steve Miller (North- 
western University, Chicago, IL) in an EAE model have shown 
that treatment of mice with anti-B7-1 during the primary 
response to proteolipid protein resulted in more rapid and 
severe secondary relapses (Miller, S., C. Vanderlugt, D.J. Len- 
schow, and J. A. Bluestone, unpublished observations). There- 
fore, the mechanism responsible for the anti-B7-1-mediated 
acceleration of disease in the NOD mouse model may be 
similar for other autoimmune diseases. 

In conclusion, these results dearly demonstrate that T cell 
costimulation is an essential component of the in vivo acti- 
vation of autoreactive T cells and the development of autoim- 
mune diabetes. Thus, the manipulation of this costimulation 
pathway may provide a powerful new target for the develop- 
ment of future therapies for diabetes and other autoimmune 
diseases. 
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