The CLIP Region of Invariant Chain Plays a Critical Role in Regulating Major Histocompatibility Complex Class II Folding, Transport, and Peptide Occupancy

By Paola Romagnoli and Ronald N. Germain

Summary

Invariant chain (Ii) contributes in a number of distinct ways to the proper functioning of major histocompatibility complex (MHC) class II molecules. These include promoting effective association and folding of newly synthesized MHC class II α and β subunits, increasing transit of assembled heterodimers out of the endoplasmic reticulum (ER), inhibiting class II peptide binding, and facilitating class II movement to or accumulation in endosomes/lysosomes. Although the cytoplasmic tail of Ii makes a key contribution to the endocytic localization of class II, the relationship between the structure of Ii and its other diverse functions remains unknown. We show here that two thirds of the lumenal segment of Ii can be eliminated without affecting its contributions to the secretory pathway events of class II folding, ER to Golgi transport, or inhibition of peptide binding. These same experiments reveal that a short (25 residue) contiguous internal segment of Ii (the CLIP region), frequently found associated with purified MHC class II molecules, is critical for all three functions. Together with other recent findings, these results raise the possibility that the contributions of Ii to the early postsynthetic behavior of class II may depend on its interaction with the class II binding site. This would be consistent with the intracellular behavior of unoccupied MHC class I and class II molecules as incompletely folded proteins and imply a related structural basis for the similar contributions of Ii to class II and of short peptides to class I assembly and transport.

Abbreviations used in this paper: endo H, endoglycosidase H; ER, endoplasmic reticulum; Ii, invariant chain.

1 Upon synthesis and translocation into the endoplasmic reticulum (ER), the component chains of class I and class II MHC molecules need to acquire a transport-competent conformation for effective post-ER transport. To achieve proper folding and a stable heavy chain–β2 microglobulin interaction suitable for secretory pathway transit, MHC class I molecules require binding site occupancy with short peptides primarily generated in the cytosol and imported into the ER via TAP (1–3). In contrast, MHC class II molecules assemble as a stoichiometric complex with trimers of the type II integral membrane glycoprotein invariant chain (Ii) (4). In the secretory pathway, this association with Ii has effects on the properties of class II analogous to those resulting from peptide interaction with class I (3). Thus, interaction with intact Ii contributes to efficient, stable association of the class II α and β subunits in the ER (5, 6), promotes the transport of class II α/β heterodimers from the ER through the Golgi complex (5, 7–10), and inhibits the binding of other ligands (peptides) to the class II molecules (11–13). Whether these multiple effects of Ii require the entire molecule or are mediated by one or more structurally independent subregions of the protein is presently unknown. A particularly intriguing question is whether the effects of Ii on class II assembly, transport, and peptide binding represent discrete activities of this protein, or, as is true for short peptides binding to class I, whether they represent the consequences of a single underlying molecular event.

To investigate how Ii structure relates to its functions in the secretory pathway, and to examine the relationships between Ii-dependent class II folding, ER to Golgi transport, and inhibition of peptide binding, we have studied the behavior of class II molecules synthesized in the presence of mutant Ii proteins with truncations in the lumenal portion of the molecule. This strategy has allowed us to identify a short contiguous segment of Ii that is necessary for and coordinately influences all three of these functions in the absence of the majority of the lumenal portion of the molecule. The identity of this critical region of Ii with invariant chain–derived peptides (CLIP) frequently eluted from purified class II molecules (14–18), when considered with other recent data on the structural consequences of peptide binding by class II molecules (18a), suggests that a common mechanism of binding site occupancy may underlie the functional...
similarities in the contributions of peptides to class I and II to class II assembly and export.

Materials and Methods

Plasmid Constructions. cDNA expression vectors containing inserts coding for various wild-type mouse class II α and β chains have been previously described (19, 20). A cDNA expression construct containing a recombinant β chain with the β1 strands of Aβ and the β1 helix and remaining portion of Aα (Aβλβα) was provided by Dr. Ned Braunstein (Columbia P & S, New York). In the assays reported in this study, this construct yields the same results as wild-type Aβ when either β chain is co-expressed with Aα.

DNA fragments containing Ii coding sequences, 5' translation control elements and EcoRI, BamHI and HindIII cloning sites were generated by PCR amplification (30 cycles: 94°C 1 min, 55°C 1 min, 72°C 2 min) using the cDNA expression construct pCWX3mli31 (19) as template and the following oligonucleotide primers: mli1-82: upstream, 5' CCGAATTCGTTATAGGCTAG-GCCATG 3'; downstream, 5' GGAATTCCTATTACCCAAGGAG-CCGAATTCAAGCTTCGTCATGAACCGCCCTAGAGAGCCAGAA 3'; downstream, 5' CGGAATTCCTATTATTTCGGAA-CATGTTATC 3'; mii19-107: upstream, 5' CGGAATTCGTTATAGGCTAG-GCCATG 3'; downstream, 5' CCGAATTCAGCTT- TACTAGGCTAGGCGCCATTGCG 3': mli1-107: upstream, 5' CGAATTCAAGCTTACCCAAGGAGCATGTTATC 3'; downstream, 5' GGAATTCCTATTACCCAAGGAGCATGTTATC 3'; mli19-107: upstream, 5' CGGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; downstream, 5' GGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; mli19-215: upstream, 5' CCGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; downstream, 5' GGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; mii31 (19) as template and the following oligonucleotide primers: miil-82: upstream, 5' CCGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; downstream, 5' GGAATTCCTATTATTTCGGAA-CATGTTATC 3'; mili1-107: upstream, 5' CCGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; downstream, 5' GGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; mii19-215: upstream, 5' CCGAATTCAGCTTACCCAAGGAGCATGTTATC 3'; downstream, 5' GGAATTCAGCTTACCCAAGGAGCATGTTATC 3'. The amplified fragments were digested with EcoRI and inserted into the EcoRI cloning site of the pCWX3mli31 vector containing Ii31, miil-82, mii1-107, mili19-215, or mii19-107. After digestion and transformation, plasmid DNA was prepared from several white colonies, digested with EcoRI and BamHI and the inserts containing the insert in the proper transcriptional orientation were selected for use.

Transient Expression. For transient expression in COS cells, a modified DEAE-dextran procedure (21) was used as previously described (7). Briefly, COS 7.2 cells plated at 10⁶ per 25 cm² tissue culture flask were washed twice with DMEM/10 mM Hepes. Cells were then incubated in 3 ml DMEM/10 mM Hepes containing 400 µg/ml DEAE dextran, 100 µM chloroquine, and DNA (1 µg of each plasmid encoding Aα and Aβ, plus 4 µg of plasmid encoding mli1, mli1-82, mli1-107, mili19-215, or mili19-107). After 4 h at 37°C in 10% CO₂, the cells were treated with 10% DMSO in PBS for 2 min at room temperature, then incubated overnight in DMEM/10% FCS. 48 h after transfection, cells were used for immunoprecipitation, surface staining, or peptide binding.

Metabolic Radiolabeling, Immunoprecipitation, and NaDod/S04/Polyacrylamide Gel Analysis. Transfected COS cells were incubated for 1 h in leucine-free RPMI 1640 medium. [3H]leucine (500 µCi/ml) was then added and the cells incubated for 20 min at 37°C. Some samples were lysed immediately using NP40 lysis buffer (13) (pulse). Other labeled cell samples were incubated for 4 h at 37°C in RPMI 1640 medium containing an excess of cold leucine (chase), then lysed in NP40 buffer. The precleared lysates were immunoprecipitated using mAbs previously bound to protein A-Sepharose beads or protein G-Sepharose beads, as previously described (13). The eluted samples were analyzed by SDS-PAGE in reducing conditions.

For endoglycosidase H (endo H) treatment, before elution, samples were incubated in 0.05 M sodium citrate buffer, pH 5.5, in the presence or absence of 15 mM endo H (Boehringer Mannheim Corp., Indianapolis, IN) at 37°C for 16 h. The eluted samples were analyzed by SDS-PAGE in reducing conditions.

Figure 1. (A) Schematic representation of wild-type mouse li31 and truncated forms of li used in this study. The exon organization of the li gene is indicated. The striped box represents the li transmembrane region. Dotted boxes indicate Ii N-linked glycosylation sites. The putative binding sites of P4H5 and IN-1 mAb are indicated. Bold numbering indicates the residues at the termini of the mutant proteins. (B) Association of li mutants with MHC class II molecules. COS cells expressing either AαAβλβα plus mli1-107 or AαAβλβα plus mili1-82 were pulse-labeled, lysed in the presence of NP40, and immunoprecipitated with an anti-MHC class II mAb, M5/114, or an anti-Ii mAb, IN-1. The samples were eluted without heating and analyzed by SDS gel electrophoresis. Arrows on the left of the figure indicate the migration of a, β, mli1-107, and mili1-82. The positions of molecular weight (Mr) markers, expressed as 10⁻² × Mr, are indicated on the right. Similar results were obtained for AαAβλβα and in experiments in which only mli1-107 was tested, for EzEβλα, and for AαAβλβα.

Peptide Binding. 48 h after transfection, COS cells were exposed to 100 µM biotinylated Eε (52-68) peptide and incubated for 4 h at 37°C. The cells were then washed, stained with PE-streptavidin, and in experiments in which only mli1-107 was tested, for EzEβλα, and for AαAβλβα.

Surface Staining. 48 h after transfection, COS cells were detached using versene, washed twice in PBS containing 5% FCS and 0.02%
Figure 2. (A) Protection of class II dimers from aggregation with free class II β chains by stably associated wild-type and truncated Ii. COS cells expressing either AαβA3 kbb (lane 1), AαβA3 kbb plus mli31 (lane 2), or AαβA3 kbb plus mli1-107 (lane 3) were pulse-labeled, lysed in the presence of NP-40, and immunoprecipitated with an anti-MHC class II mAb, Y-3P. Arrows on the right of the figure indicate the migration of α, mli31, β, and mli1-107. Arrows on the left point to the positions of the molecular weight (Mr) markers. The displayed figure used AαβA3 kbb; similar data were obtained using AαβA3 kbb and AαβA3 kbb. Enhanced surface expression, previously shown to correlate with Ii-dependent secretory pathway trafficking (7), was also observed using AαβA3 kbb and AαβA3 kbb.

(B) Enhancement of MHC class II ER egress and Golgi transit by the mli19-107 truncated form of Ii. Metabolically labeled MHC class II molecules were immunoprecipitated with the mAb Y-3P from lysates of COS cells after pulse-labeling and a 4-h chase period. (Lanes I and 2), AαβA3 kbb alone, (lanes 3 and 4) AαβA3 kbb plus mli1-107. Immunoprecipitates were either mock treated (lanes 1 and 3) or treated with endo H before gel analysis (lanes 2 and 4). The eluted boiled samples were analyzed by SDS-PAGE under reducing conditions. Arrows on the right indicate the migration of immature α, mli31, β, and mli1-107. The positions of molecular weight (Mr) markers, expressed as 10^-3 × Mr, are indicated on the left. The numbers below each lane give the α/β band intensity ratio as determined by densitometric analysis.

Results and Discussion

Because the ER-related functions of wild-type Ii involve stable association with class II, we first established the minimum structure necessary for such interaction. cDNA expression constructs were prepared encoding COOH-terminal (luminal) truncations of Ii with or without deletion of endosomal localization signals in residues 2–19 of the cytoplasmic tail (20, 22–24) (Fig. 1 A). Ii mutants were expressed in COS cells together with mouse class II Aα and Aβ chains and proteins from lysates of pulse-labeled cells were immunoprecipitated using mAbs specific for AαA3 or the cytoplasmic tail of Ii (IN-1 [25]). mli1-107 was the shortest form of Ii coprecipitating with class II (Fig. 1 B). mli-82 was not detectably associated with MHC class II molecules in NP-40 lysates, although it could be readily precipitated by IN-1 (Fig. 1 B). Small amounts of class II were inconsistently coprecipitated with mli1-82 from digitonin lysates (data not shown). Thus, the exon 3-encoded region (26) between residues 83 and 107 of Ii makes a critical contribution to association with MHC class II, and sequences beyond residue 107 are unnecessary for stable class II–Ii interaction in the ER. These data on the contribution of this region to class II–Ii association complement those recently obtained using an internal deletion approach (27).

The mAb Y-3P (28) only reacts with assembled class II αβ dimers, and AαAβ dimers precipitated by Y-3P from lysates of [3H]leucine-labeled spleen cells show better labeling of the Aα than Aβ chain (5, 13). Yet in Y-3P immunoprecipitates from COS cells expressing class II without Ii, a greater Aβ than Aα signal was observed (Fig. 2 A). Recent experiments indicate that this represents coprecipitation of unassembled, aggregated, disulfide-linked β chains with the small number of true α/β heterodimers that form in cells lacking Ii (6). Strikingly, coexpression of either mli31 or mli1-107, but not mli1-82, eliminated coprecipitation of these excess
providing at least some of the stabilization of class II that peptide Ec~ (52-68), then stained with PE-streptavidin. Fig. 3 while holding the two chains together; (b) It could bind out-

proteins. These results confirm that li promotes effective binding were examined using constructs lacking the endosomal formation of class II heterodimers that resist interaction with localization signals in residues 2-19 of the li cytoplasmic tail incompletely folded proteins or their associated chaperones (22, 23, 29, 30). Class II molecules expressed in cells lacking and demonstrate that the li segment 1-107 is both necessary li show retention in the ER (10, 20, 23, 24) and poor acquisition and sufficient for this function.

The contributions of li luminal subregions to class II heterodimer export from the ER and to inhibition of peptide binding were examined using constructs lacking the endosomal acquisition of endo H resistant N-linked glycans (5, 7-10). Coex-

peptide binding were examined using constructs lacking the endosomal 83-107) plays a critical role in effective li interaction with and sufficient for this function. localization signals in residues 2-19 of the li cytoplasmic tail, whether or not class II was also present (data not shown). In contrast, mii19-107 was highly effective in promoting the ER egress and medial class II assembly/transport promoting functions of li and to Golgi transit of Y-3P-reactive class II dimers, based on their acquisition of endo H-resistant glycans (Fig. 2 B). As would be expected from these biochemical data, coexpression of mii19-107 also increased cell surface expression of class II (data not shown).

Intact li inhibits stable peptide–MHC class II interaction (11, 12), and in vitro studies with soluble synthetic peptides have led to the suggestion that a segment of li between residues 83-107 (CLIP) is involved in this function (16, 18). To examine whether inhibition of peptide binding mapped to this region in membrane-anchored li proteins, COS cells were prepared that expressed on their surface class II alone (after intracellular dissociation from wild-type mli31), class II stably assembled with mli19-107, or class II stably assembled with mli19-215. These cells were incubated with the biotinylated peptide Ec (52-68), then stained with PE-streptavidin. Fig. 3 shows that association of class II with mli19-107, as well as the longer mli19-215 form, prevents formation of class II–Ec (52-68) complexes. Similar results were obtained using unconjugated peptide and an antibody (Y-Ae [31]) specific for the class II–Ec peptide complex, and class II–dependent peptide stimulation of T hybridoma responses was also prevented by mli19-107 (data not shown). Thus, the same short 83-107 segment of li makes an essential contribution to both the class II assembly/transport promoting functions of li and to its ability to inhibit peptide binding.

mli19-107 could carry out its functions by any of three general mechanisms: (a) It could form a cap across the superficial surface of the peptide binding site, preventing peptide entry while holding the two chains together; (b) It could bind outside the binding groove, inhibiting peptide interaction by an allosteric change in class II structure that also promotes α and β chain association; or (c) It could lie in the binding groove, blocking interaction with antigenic peptides while providing at least some of the stabilization of class II that is characteristic of conventional binding site occupancy. In an initial attempt to discriminate among these possibilities, we examined the effect of mli19-215 and mli19-107 association on class II interaction with a bacterial superantigen whose binding involves the class II α1 domain and with antibodies specific for the class II α1 or β1 helices. Fig. 4 shows that mli19-215 association decreases class II binding of TSST-1, in agreement with Karp et al. (29). This long form of li also inhibits class II interaction with the α chain–specific mAb Y-3P, without affecting interaction with the β chain–specific mAb M5/114. In contrast, mli19-107 does not affect the binding of any of these probes to class II. Thus, the COOH-terminal luminal region of li does show evidence of binding to the superficial region of the α chain portion of the class II binding domain. Nevertheless, a shortened form of li (mli19-107) that is fully capable of inhibiting peptide binding and promoting proper class II structure shows no evidence of such interaction. This is inconsistent with the ability of li to inhibit peptide binding requiring superficial occlusion (capping) of the class II binding domain, although the more COOH terminal part of li chain may have this property.

The results presented here indicate that an internal segment of invariant chain encoded by a single exon (residues 83-107) plays a critical role in effective li interaction with class II, in promoting formation of properly folded α/β dimers, in enhancing MHC class II egress from the ER, and in regulating class II peptide binding. The more COOH-terminal region of li (from residues 108-215) is unnecessary for any of these secretory pathway functions. When considered with evidence that a naturally occurring 68 residue insertion near the COOH terminus of li preserves interaction with class II but alters processed antigen presentation by these molecules (32), our data imply that rather than acting as a
single functional unit, the luminal region of Ii is divided into structurally discrete subdomains with different effects on class II molecules at early and late times after biosynthesis.

Based on in vitro data using synthetic peptide versions of the CLIP region, other investigators have suggested a role for this portion of Ii in controlling peptide binding to class II (16, 18). Our results here with membrane anchored forms of Ii provide clear support for this model, but perhaps more significantly, they also reveal that this same segment of Ii is involved in the control of class II heterodimer folding and ER to Golgi transport. We regard as striking the functional similarities between these coordinate CLIP-dependent effects of Ii on class II early postsynthetic behavior and the effects of peptide binding on class I in the ER. In both cases, the interaction promotes conformational changes in HC subunit interaction, inhibits chaperone association, promotes secretory pathway transport, and interferes with binding of other ligands (3).

How does Ii, and in particular the CLIP region, mediate these various effects? Our data do not rule out an allosteric model in which Ii interaction with class II outside the binding groove is the key event in regulating all of these aspects of the ER/Golgi behavior of class II molecules. In both cases, the type II membrane orientation of Ii would permit this interaction to assure that CLIP does not become too tightly associated with class II. Distinct regions of intact Ii clearly contact class II, which may help strengthen the low affinity association with other potential ligands until Ii is removed by proteolytic processes involved in very stable peptide binding (35, 36), helping to generate that extends out of the binding site proper, may affect the ability of class II to undergo the intramolecular rearrangements involved in very stable peptide binding (35, 36), helping to assure that CLIP does not become too tightly associated with class II. Distinct regions of intact Ii clearly contact class II, which may help strengthen the low affinity association of the CLIP segment with diverse binding sites, yet allow effective dissociation after partial Ii proteolysis in the endocytic pathway. CLIP control of binding site availability would affect where within the endosomal pathway class II mole-

![Diagram](https://example.com/diagram.png)
cules can be loaded with antigenic peptides, as it is necessary to remove this region prior to effective association with processed antigen. This event appears to be critically dependent on the expression of the DMA and DMB genes of the MHC (37, 38).

The MHC class II binding site allows occupancy with long peptides (35) and even unfolded segments of intact proteins (39). Thus, the ability of Ii to interfere with binding site function may be critical to the export of useful class II molecules to the relevant antigen processing compartment. Class II might otherwise interact unproductively with exposed peptide segments of the incompletely folded proteins present in high concentration in the ER lumen, in a manner analogous to the presumed binding of class II to denatured protein antigens in endosomes/lysosomes (3). This interference with unproductive ER binding to class II to large proteins seems to be the relevant consequence of Ii inhibition of binding site function, not the prevention of binding of the short peptides that are the ligands of class I (5).

MHC molecules lacking binding site ligands behave within cells as incompletely folded proteins. The dichotomy in preferred sites of antigenic peptide acquisition by class I and class II molecules, despite initial formation of both classes of binding sites in the ER, demands distinct solutions to the occupancy requirement for folding compatible with secretory pathway transport. Previous studies have shown that Ii provides for class II the ER functions performed by short antigenic peptides for class I (5). The present study suggests that this similarity may be more than superficial, possibly involving the direct occupancy of the class II binding site with an internal Ii segment.

We wish to thank M. Marks, E. Long, P. Roche, J. van Meerwijk, and S. Sadegh-Nasseri for helpful comments on this manuscript; L.-Y. Huang and J. van Meerwijk for assistance with PCR methods; and L. Stern for helpful structural discussions.

Address correspondence to Dr. Ronald N. Germain, Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N311, Bethesda, MD 20892.

Received for publication 2 May 1994.

References

urally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. *Nature (Lond.*) 358:764.

