Antibodies Inhibit the Protease-mediated Processing of a Malaria Merozoite Surface Protein

By Michael J. Blackman, Terry J. Scott-Finnigan, Shafrira Shai, and Anthony A. Holder

From the Division of Parasitology, National Institute for Medical Research, London NW7 1AA, UK

Summary

When merozoites of the malaria parasite *Plasmodium falciparum* are released from infected erythrocytes and invade new red cells, a component of a protein complex derived from the merozoite surface protein 1 (MSP-1) precursor undergoes a single proteolytic cleavage known as secondary processing. This releases the complex from the parasite surface, except for a small membrane-bound fragment consisting of two epidermal growth factor (EGF)-like domains, which is the only part of MSP-1 to be carried into invaded erythrocytes. We report that, of a group of monoclonal antibodies specific for epitopes within the EGF-like domains, some interfere with secondary processing whereas others do not. Those that most effectively inhibit processing have previously been shown to prevent invasion. Other antibodies, some of which can block this inhibition, not only do not prevent invasion but are carried into the host cell bound to the merozoite surface. These observations unequivocally demonstrate that the binding of antibody to the COOH-terminal region of MSP-1 on the merozoite surface may not be sufficient to prevent erythrocyte invasion, and show that the interaction of different antibodies with adjacent epitopes within the EGF-like domains of MSP-1 can have distinct biochemical effects on the molecule. Inhibition of MSP-1 processing on merozoites may be a mechanism by which protective antibodies interrupt the asexual cycle of the malaria parasite.

The blood-stage malaria parasite replicates within host erythrocytes. At periodic intervals, parasitized cells rupture to release infectious merozoite progeny which rapidly reinvoke fresh erythrocytes. The initial interaction between merozoite and red cell involves ligands on the merozoite surface (1), and it is widely documented that antibodies to merozoite surface proteins (MSPs) can interfere with parasite growth in vitro (2–9) and in vivo (10–12). In some cases these antibodies act by directly agglutinating released merozoites (7). However, in the majority of cases reported, the mechanisms involved are unknown.

A major component of the merozoite surface is a protein complex containing proteolytic fragments of the MSP-1 precursor (13). After merozoite release, a secondary processing event occurs in which the membrane-bound 42-kD component (MSP-142) of this complex is subjected to a single proteolytic cleavage (14, 15). The NH2-terminal, 33-kD cleavage product (MSP-133) is shed with the remainder of the complex (16), whereas the COOH-terminal, 19-kD fragment (MSP-119), which consists of two epidermal growth factor (EGF)-like domains, remains on the merozoite (2, 14) (see Fig. 1). Secondary processing goes to completion when a merozoite successfully invades an erythrocyte (2, 17). Processing also takes place in free merozoites isolated from culture, allowing the development of an assay which we have used to partially characterize the protease responsible (16, 17). We have postulated that secondary processing may be an essential step in erythrocyte invasion, and were therefore interested in specific inhibitors of the proteolysis.

In this study, a group of IgG mAbs reactive with epitopes within the EGF-like domains of MSP-1 was screened for their ability to interfere with secondary processing.

Materials and Methods

*Parasites.* *Plasmodium falciparum*, strain FCB-1 and clone T9/96, was maintained in culture and synchronized as described previously (16, 17).

*Antibodies.* mAbs 12.8, 12.10, 7.5, and 2.2 have been described previously (2, 13), as have mAbs 111.4, 111.2, and 89.1 (18, 19). mAbs 1E1, 2F10, and 12D11 were produced recently in this laboratory (20). With the exception of mAb 89.1, all the antibodies recognize disulphide-constrained epitopes within the EGF-like domains of MSP-1 (see Fig. 1) as shown by their reactivity on Western blots with native (21) or recombinant (20, 22) MSP-1 in a nonreduced but not a reduced form. All mAbs were purified by affinity chromatography on protein A or protein G-Sepharose, and dialyzed exhaustively against PBS, pH 7.2, containing 1 mM CaCl2 and 1 mM MgCl2 (PBS Ca/Mg) before use.
Production of a rabbit antiserum against a recombinant protein corresponding to the NH_2-terminal region of MSP-1 has been described previously (16, 17). The antiserum recognizes both MSP-142 and MSP-133, but not MSP-119.

Merozoite Production. Mature FCB-1 schizonts were enriched from synchronous cultures by flotation on Plasmagel (17) or centrifugation over 63% isotonic Percoll (21) and added to fresh erythrocytes to obtain a final parasitaemia of 10%. The cells were resuspended to a 5% hematocrit in culture medium, divided into aliquots, then supplemented with either culture medium only or purified mAbs, previously dialyzed against culture medium. Final mAb concentration in these cultures was 500 μg ml^-1. After incubation at 37°C for 4 h to allow merozoite release and erythrocyte invasion, residual schizonts were removed by three cycles of centrifugation over 67.5% isotonic Percoll (2). The resulting preparations, containing only uninfected erythrocytes and newly parasitized cells, were washed twice in medium containing 5% FCS, smeared onto slides, air-dried, and acetone fixed. Intracellular, parasite-associated antibody was visualized by incubation of fixed preparations with a FITC-conjugated goat anti-mouse IgG antibody (Sigma Chemical Co., St. Louis, MO) diluted 1:100 in PBS containing 5% vol/vol FCS. Slides were counterstained with 0.01% wt/vol Evans blue in PBS, and examined by fluorescence microscopy.

Asays of MSP-1 Secondary Processing. Secondary processing of MSP-1 in preparations of merozoites, and the effects of anti-MSP-1 mAbs on it, was assayed using the immunoblot method described previously (16, 17). Briefly, freshly isolated merozoites were washed in ice-cold PBS Ca/Mg, divided on ice into aliquots containing ~2 × 10^7 merozoites each, and supplemented with either buffer only or purified mAb to a final antibody concentration of 400 μg ml^-1. One aliquot supplemented with buffer only was immediately solubilized in SDS; all other samples were incubated at 37°C for 1 h to allow secondary processing to occur before solubilization. All samples were then subjected to SDS-PAGE under non-reducing conditions on a 12.5% gel, electrophoretically transferred to nitrocellulose, and the blot probed with the rabbit antiserum to MSP-133.

The above methodology was modified to assess the ability of antibodies which did not affect processing, to competitively block the activity of those that did. Aliquots of washed merozoites on ice were supplemented with either buffer only or purified mAb to a final antibody concentration of 400 μg ml^-1. After a 15-min incubation (pretreatment) on ice, samples were further supplemented with processing inhibitory mAbs 12.8 or 12.10, or 1E1 (400 μg ml^-1 final concentration), placed at 37°C for 1 h, then SDS-solubilized and analyzed by immunoblot as described above.

Merozoite Invasion Inhibition Tests. These were carried out as described previously (2).

Analysis of Newly Parasitized Erythrocytes for the Presence of Antibodies Carried in on Invading Merozoites. Mature schizonts were enriched from synchronous cultures by flotation on Plasmagel (17) or centrifugation over 63% isotonic Percoll (21) and added to fresh erythrocytes to obtain a final parasitaemia of 10%. The cells were resuspended to a 5% hematocrit in culture medium, divided into aliquots, then supplemented with either culture medium only or purified mAbs, previously dialyzed against culture medium. Final mAb concentration in these cultures was 500 μg ml^-1. After incubation at 37°C for 4 h to allow merozoite release and erythrocyte invasion, residual schizonts were removed by three cycles of centrifugation over 67.5% isotonic Percoll (2). The resulting preparations, containing only uninfected erythrocytes and newly parasitized cells, were washed twice in medium containing 5% FCS, smeared onto slides, air-dried, and acetone fixed. Intracellular, parasite-associated antibody was visualized by incubation of fixed preparations with a FITC-conjugated goat anti-mouse IgG antibody (Sigma Chemical Co., St. Louis, MO) diluted 1:100 in PBS containing 5% vol/vol FCS. Slides were counterstained with 0.01% wt/vol Evans blue in PBS, and examined by fluorescence microscopy.

Figure 1. Schematic showing secondary processing of the P. falciparum MSP-1. (A) MSP-1 is present on the newly released merozoite surface as a complex of four polypeptides of ~83, 30, 38, and 42 kD (MSP-142, MSP-130, MSP-133, and MSP-119). MSP-142 (derived from the COOH terminus of the precursor; shaded) is membrane bound through a glycosyl phosphatidylinositol anchor. (/B) At or just before erythrocyte invasion, cleavage of MSP-142 between Leu1630 and Asn1631 (numbering based on the deduced amino acid sequence of the complete MSP-1 gene; 15) produces MSP-133 and MSP-119 and releases the complex from the merozoite surface. MSP-130 is represented as two EGF-like modules. A quantitative analysis of the processing (17) has shown that MSP-142 is stoichiometrically converted to MSP-133. All the mAbs used in this study bind epitopes within MSP-133, except mAb 89.1, which recognizes an epitope on MSP-119 (16, 19).

Figure 2. Secondary processing of MSP-1 is inhibited by some but not all mAbs specific to epitopes within the EGF-like domains. Shown is processing of MSP-142 in isolated, freshly washed merozoites (lane 1); after further incubation of the merozoites at 37°C in the absence of added antibody (lane 2); or in the presence of purified mAbs 2.2 (lane 3), 7.5 (lane 4), 12.8 (lane 5), 12.10 (lane 6), 2F10 (lane 7), 12D11 (lane 8), 1E1 (lane 9), 111.4 (lane 10), 111.2 (lane 11), and 89.1 (lane 12). Secondary processing is indicated by the appearance of a band corresponding to MSP-133, and a concomitant decrease in the intensity of the MSP-142 band.
Results and Discussion

All the anti-MSP-19 mAbs used in this study bind to the surface of unfixed merozoites, and to acetone-permeabilized newly invaded (ring-stage) parasites as ascertained by indirect immunofluorescence assays (data not shown). Fig. 2 shows that only three of the mAbs inhibited secondary processing on merozoites. All three mAbs also induced some abnormal processing, resulting in a slightly truncated form of MSP-133 in addition to or instead of the usual product. Inhibition was dose dependent and detectable at antibody concentrations as low as 40 μg ml⁻¹ in the case of mAbs 12.8 and 12.10; mAb 1E1 was 10-fold less potent (data not shown). To confirm that the inhibition was a direct effect of antibody binding to MSP-1, we made use of the earlier observations of Wilson et al. (24). These authors used a two-site RIA to show that the binding of mAb 12.8 to purified MSP-1 was blocked when any one of mAbs 2.2, 7.5, or 12.10 occupied their epitopes. Similarly, binding of mAb 12.10 was blocked by the binding of mAbs 12.8 and 7.5, but not by...
mAb 2.2. We found that the inhibitory effects of antibodies on processing could be specifically blocked in a manner consistent with these data. Fig. 3 shows that pretreatment of merozoites with mAbs 2.2 or 7.5 blocked the inhibitory activity of mAb 12.8. In the case of mAb 12.10, pretreatment with mAb 7.5, but not mAb 2.2, blocked its activity. Pretreatment with mAb 11.4 had no effect on the activity of mAbs 12.8 and 12.10, but did block the activity of mAb 1E1, indicating that 1E1 binds an epitope distinct from those recognized by mAbs 12.8 and 12.10. The effects of all three mAbs were, however, blocked by pretreatment with mAb 7.5, suggesting that the three epitopes are adjacent.

We have previously reported that mAbs 12.8 and 12.10 prevent erythrocyte invasion when added to in vitro cultures of *P. falci*parum (2). When purified mAbs 111.4, 111.2, 12DDL1, 2F10, and 1E1 were assayed for their ability to inhibit invasion in cultures of parasite strains FCB-1 or T9/96, no inhibition was seen at antibody concentrations of <2 mg ml⁻¹. Since it seemed unlikely that under these conditions invading merozoites were completely evading the antibody, we analyzed intracellular ring-stage parasites from these cultures for the presence of antibody. Newly parasitized cells were acetone fixed and probed with a FITC-conjugated anti-mouse IgG. Fig. 4 shows that a strong rim of fluorescence was detected associated with the intracellular parasites. No fluorescence was seen with T9/96 rings produced in the presence of mAbs 111.4 and 12DDL1 (data not shown). These mAbs recognize epitopes not present on the MSP-1 allele expressed of *P. falci*parum. Since it seemed unlikely that under these conditions invading merozoites were completely evading the antibody, we analyzed intracellular ring-stage parasites from these cultures for the presence of antibody. Newly parasitized cells were acetone fixed and probed with a FITC-conjugated anti-mouse IgG. Fig. 4 shows that a strong rim of fluorescence was detected associated with the intracellular parasites. No fluorescence was seen with T9/96 rings produced in the presence of mAbs 111.4 and 12DDL1 (data not shown). These mAbs recognize epitopes not present on the MSP-1 allele expressed of *P. falci*parum. Since it seemed unlikely that under these conditions invading merozoites were completely evading the antibody, we analyzed intracellular ring-stage parasites from these cultures for the presence of antibody. Newly parasitized cells were acetone fixed and probed with a FITC-conjugated anti-mouse IgG. Fig. 4 shows that a strong rim of fluorescence was detected associated with the intracellular parasites. No fluorescence was seen with T9/96 rings produced in the presence of mAbs 111.4 and 12DDL1 (data not shown). These mAbs recognize epitopes not present on the MSP-1 allele expressed of *P. falci*parum.
the region predominantly recognised by antibodies to the Plasmodium falciparum merozoite surface antigen MSA 1. Mol. Biochem. Parasitol. 51:301.


