Demonstration of Large-Scale Migration of Cortical Thymocytes to Peripheral Lymphoid Tissues in Cyclosporin A-treated Rats
By Homayoun Hossein Zadeh and Irving Goldschneider

From the Department of Pathology, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030

Summary
Young adult Lewis rats were maintained on diets containing 0.015 or 0.027% cyclosporin A (CSA) for periods of up to 6 wk. All animals showed complete depletion of medullary thymocytes (CD4$^+$8$^-$ and CD4$^-$8$^+$, T cell receptor [TCR] α/β, Thy-1$^{med/low}$, terminal deoxynucleotidyl transferase negative [TdT$^-$]) and a 50% reduction in the number of TdT$^+$ cortical thymocytes (CD4$^+$8$^+$, TCR α/βlow, Thy-1hi) within 1 wk of CSA treatment. In addition, about half of the animals displayed a 50% reduction in the number of TdT$^+$ cortical thymocytes (CD4$^+$8$^+$, TCR α/βlow, Thy-1hi). These intrathymic changes were accompanied by a reciprocal increase in the number of double-positive (DP; CD4$^+$8$^+$) T cells in lymph nodes (LN) and spleens. To confirm that the latter T cells were recent thymic emigrants (RTE), CSA-treated rats were injected intrathymically with fluorescein isothiocyanate, and the phenotype of the labeled T cells appearing in LN was determined 16 h later. The results demonstrated that, in addition to those RTE exported in normal animals (>90% medullary origin), the emigration of DP thymocytes, including large numbers of TdT$^+$ thymocytes, was markedly increased. The presence of TdT$^+$ cells, which normally do not leave the thymus, clearly identifies the DP RTE as originating from the thymus cortex. Intrathymic labeling studies also directly demonstrated that export of all thymocyte subsets ceases within 9 d of CSA treatment; and thymectomy experiments confirmed that the CSA-induced increase in phenotypically immature T cells resulted primarily from the disturbance of thymocyte maturation and emigration, rather than from a direct effect on preexisting T cells. These results suggest that a wave of cortical thymocytes, many of which presumably have not yet undergone negative selection, is released from the thymus during the first week of CSA treatment. The presence of these potentially unselected cells in peripheral lymphoid tissues may help to explain the increased frequency of autoreactive T cells observed in CSA-treated animals.

Cyclosporin A (CSA)1 is a product of fungal metabolism that has very useful immunosuppressive properties clinically in the prevention of organ graft rejection and GVHD, and in the treatment of autoimmune disorders (reviewed in references 1 and 2). However, under certain circumstances CSA has the paradoxical effect of promoting syngeneic GVHD and organ-specific autoimmunity. Thus, CSA treatment after irradiation and syngeneic bone marrow transplantation produces severe GVHD in rats (3-7) and milder GVHD in several strains of mice (8). In addition, CSA treatment of neonatal rodents leads to organ-specific autoimmune disease (9, 10). The role of CSA in these models appears to be multifold: i.e., arrest of thymocytopoiesis at the double-positive (DP; CD4$^+$8$^+$) stage (11-13); interference with positive and negative intrathymic selection (14-16), possibly secondary to selective inhibition of cytokine production (17, 18) and/or damage to stromal cells (19-25); and inhibition of regulatory T cell maturation (13). The net effect of these actions is to skew the T cell repertoire towards unregulated effector T cells bearing self-reactive TCRs. However, little is known about the origin, phenotype(s), and fate of these autoreactive T cells.

It has been widely reported that long-term CSA treatment in mice leads to the accumulation of double-negative (CD4$^-$8$^-$) T cells in the peripheral lymphoid tissues, some of which may be T cells that have escaped negative intrathymic selection (11, 13, 19). In contrast, we (26, 27) and others (8, 28) have recently reported that short-term CSA treatment of young adult rats results in the appearance in LN of large numbers of double-positive T cells. In addition, we have demonstrated that most of these cells are very small and have

1 Abbreviations used in this paper: CSA, cyclosporin A; DP, double positive; RTE, recent thymic emigrants; SPL, spleen; TdT, terminal deoxynucleotidyl transferase.
a TCR α/βlow, Thy-1+ comprises a significant number of T cells in the LN of CSA-treated rats. However, in the present study, the kinetics of appearance of DP T cells in LN of CSA-treated rats were almost identical to that of immature cortical thymocytes; and that most of these DP T cells were TdT+ (data not shown). This analysis also showed that CSA treatment resulted in loss of medium size, Thy-1low, TCR α/βlow, TdT+ T cells within 7 d. We have previously shown (37) that such T cells have a single-positive, RT6−, CD45RC− phenotype characteristic of RTE from the thymus medulla and their immediate descendants.

Additional evidence that the DP T cells that appeared in LN of CSA-treated rats were RTE was found in the inverse correlation between the mean percentage of DP T cells in LN of groups of rats (Fig. 3 A) and the mean number of thymocytes in these same animals (Fig. 3 B) as a function of time. Indeed, as shown in Table 1, those rats that had <700 × 10⁶ (mean, 568 × 10⁶) thymocytes 3–7 d after CSA treatment also had a significantly higher mean percentage of DP, Thy-1hi, TCR α/βhigh LN T cells than did those that had >700 × 10⁶ (mean, 947 × 10⁶) thymocytes (p < 0.001). This correlation suggests that the animals with the smallest thymi were those that had cumulatively exported the largest number of DP T cells.
CD8

Day 5 CSA LN

Day 7 CSA LN

Control Thymus

CD4

Day 5 CSA LN

Day 7 CSA LN

Control Thymus

Control LN

Day 1 CSA LN

Day 3 CSA LN

Thymus

numbers of cortical thymocytes to the periphery during the first week of CSA treatment.

To confirm the role of the thymus in maintaining the pool of Thy-1+ T cells in peripheral lymphoid tissues, LN biopsies were obtained at time intervals from thymectomized rats that had been maintained on CSA or control lab chow for up to 32 d. The results in Table 2 show that thymectomy, but not sham-thymectomy, led to the loss of Thy-1+ T cells from LN within 1 wk, presumably by permitting their maturation to Thy-1- T cells while preventing their replacement by RTE (37). The results also demonstrate that the treatment of rats with CSA either 10 d after or the same day as

Figure 1. Two-color gated flow cytometric analysis of the expression of CD8 and/or CD4 by LN cells from 0.027% CSA-treated and control rats, as compared with normal thymocytes.

Figure 2. Gated flow cytometric analysis of TCR α/β and Thy-1 expression vs. forward light scatter (relative cell size) by LN cells from 0.027% CSA-treated and control rats. The corresponding profiles of normal thymocytes are included for comparison. The windows demarcate two subsets of TCR α/β+ cells: the upper window being medium sized, TCR α/βhi; the lower being small, TCR α/βlow. The windows also demarcate two subsets of Thy-1+ cells: the upper being mostly small Thy-1hi/med; and the lower being medium-sized Thy-1low. The percentage of total LN cells within each window is indicated.

Forward Light Scatter
Figure 3. Kinetics of (A) increase of DP (CD4+8+) T cells in LN and (B) decrease of total cells in thymus of 0.027% CSA-treated rats. Results in A represent mean percent of total LN cells that are DP at the indicated times during CSA treatment (four animals per point), and are presented as the line of best fit for all points as determined by linear regression analysis: \(r^2 = 0.99; \) slope = 4.85. Results in B for days 0–7 depict mean \(\pm \) SD of total thymocytes from four individual rats, and those for days 14 and 21 represent the averaged values from four pooled thymi.

Table 2. Effects of Thymectomy and/or CSA Treatment on Thy-1+ T Cells in LN

<table>
<thead>
<tr>
<th>Day</th>
<th>Sham-Thymectomy</th>
<th>Thymectomy</th>
<th>Thymectomy + CSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>21.6 (\pm) 2.6</td>
<td>1.1 (\pm) 0.3</td>
<td>1.6 (\pm) 0.8</td>
</tr>
<tr>
<td>17</td>
<td>22.4 (\pm) 0.6</td>
<td>1.4 (\pm) 0.6</td>
<td>1.7 (\pm) 0.5</td>
</tr>
<tr>
<td>32</td>
<td>17.4 (\pm) 0.7</td>
<td>2.9 (\pm) 0.4</td>
<td>3.6 (\pm) 1.1</td>
</tr>
</tbody>
</table>

5–8-wk-old Lewis rats were thymectomized or sham-thymectomized 10 d before initiation of CSA therapy and maintained on a 0.027% CSA or control diet for 32 d. LN cells were obtained through biopsies of cervical or inguinal LN at the indicated intervals, stained with mAbs to TCR \(\alpha/\beta \) and Thy-1.1 antigens, and analyzed by flow cytometry. Results represent mean \(\pm \) SD of three to six rats.

Table 1. Distribution Analysis of the Percentage of CD4+8+, Thy-1hi, TCR \(\alpha/\beta^{low} \) LN Cells as a Function of the Number of Thymocytes Present in Rats Treated with 0.027% CSA for 3–7 d

<table>
<thead>
<tr>
<th>No. of thymocytes</th>
<th>Percent positive LN cells (mean (\pm) SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times 10^{-6})</td>
<td>CD4+8+</td>
</tr>
<tr>
<td>459–698</td>
<td>568 (\pm) 203</td>
</tr>
<tr>
<td>788–1,125</td>
<td>947 (\pm) 140</td>
</tr>
</tbody>
</table>

* \(p <0.001. \)
Figure 4. The percentage (mean ± SD) of RTE in LN of normal rats and those treated with 0.015% CSA for 3–9 d. All rats were injected intrathymically with FITC 16 h before death. FITC+ T cells (RTE) were identified by simultaneous flow cytometric analysis for FITC and TCR α/β cells. The proportion of FITC+ LN cells was significantly greater than normal after 3 d of CSA therapy (p < 0.05) and significantly lower on days 5 (p < 0.02) and 9 (p < 0.001).

Import in CSA-treated rats was due almost entirely to a five- and eightfold increase in the release of DP and TCR α/βlow thymocytes, respectively, the difference between these values presumably being the enhanced export of the CD4+8+ precursors of CD4+8+ cortical thymocytes. Thus, in addition to the continued release of the CD4+8+ and CD4−8+ subsets of Thy-1med/low, TCR α/βlow medullary thymocytes through day 5 in CSA-treated animals, there was a threefold increase (4.3 to 11.8%) in the release of the Thy-1med subset of DP, TCR α/βlow cortical thymocytes on day 3, and the appearance of two new subsets (CD4+8+ and CD4−8−) of Thy-1hi, TCR α/βlow T cells, which were not readily detectable in control rats. Unlike the cells in the Thy-1med subset of DP RTE, the cells in the Thy1hi subsets were TdT+ (data not shown). This clearly indicated that they originated from the thymus cortex (38, 39). In aggregate, the Thy-1med and Thy-1hi subsets of DP, TCR α/βlow T cells accounted for ~40% of the total RTE in CSA-treated rats on day 3, whereas such cells accounted for ~5% of total RTE in control rats (37). In the experiment in Fig. 5, export of both of the TdT+ and TdT− subsets of DP RTE from the thymus cortex decreased markedly between days 3 and 5 of CSA treatment, whereas export of SP RTE from the medulla continued through day 5. However, in other experiments in which individual time points were tested, emigration of cortical (as well as medullary) thymocytes was observed on day 5 and, less frequently, on day 7 of CSA treatment (data not shown).

Discussion

Although the emigration of cortical thymocytes to peripheral lymphoid tissues has long been suggested (38), this is to our knowledge the first direct demonstration of this phenomenon, albeit under unphysiological conditions. More-
over, in related papers in preparation, we describe a similar phenomenon in antigen-stimulated rats (Durkin, Seto, and I. Goldschneider, unpublished results), and to a lesser extent in normal rats (37). Nonetheless, despite the qualitative demonstration of cortical thymocyte emigration by phenotypic analysis of intrathymically labeled T cells, some of the quantitative aspects of the present study warrant discussion.

For example, it could be argued that the marked decline in cortical thymocytes in \(\sim 50\% \) of CSA-treated rats resulted primarily from increased cell death and/or decreased cell proliferation within the thymus, rather than from increased cell export from the thymus. Several lines of evidence suggest that this is not the case. First, there was an inverse correlation between the size of the thymus and the percentage of DP, TCR \(\alpha/\beta^{\text{low}} \), Thy-1\(^{\text{hi}} \) T cells present in LN and SPL of individual CSA-treated animals. Second, in those rats in which CSA caused a marked decrease in total thymocytes, DP T cells constituted \(\sim 30\% \) of total lymphocytes in LN, thereby increasing the total number of peripheral T cells by an estimated \(400 \times 10^6 \) cells. This calculation assumes a total of \(10^9 \) peripheral T cells in age-, weight- and sex-matched control rats, based on the observation that the SPL contains \(\sim 40\% \) of the total T cells in the body (40). Third, the estimated number of immature T cells that appeared in the peripheral lymphoid tissues of CSA-treated rats approximated the total number of cells that were lost from the thymus of the same animals by day 5. Fourth, most of these DP T cells expressed TdT, which normally is present only in immature T cells (29, 38, 39). Fifth, in previous studies we have demonstrated that many of these DP T cells express the CS1.21 antigen, which also is specific for a subset of cortical thymocytes in normal rats (26).

These findings are consistent with recent reports from other laboratories of the appearance of DP cells in peripheral lymphoid tissues of CSA-treated, irradiated and bone marrow-reconstituted rats (8, 28). Hence, by as yet undefined mechanisms, CSA appears to induce the release of cortical thymocytes at a less mature stage and in much greater numbers than those released in normal animals. Moreover, after the surge in the release of cortical (and medullary) thymocytes during the first week of CSA therapy, thymic emigration ceases (Figs. 4 and 5), and the number of thymocytes once again increases (Fig. 3 B). Kinetic studies of thymocytopenia indicate that the halt in thymocyte export during CSA treatment is due to a block in the differentiation of TdT\(^+\) to TdT\(^-\) cortical thymocytes, coupled with exhaustion of the supply of preexisting exportable cells from the cortex and medulla (Hossein Zadeh, H., and I. Goldschneider, manuscript in preparation). These studies also show that the increase in total thymocytes during the second week of CSA treatment is due to "piling up" of immature cortical thymocytes behind this block. Most importantly, these studies suggest that the completeness and rapidity of onset of the block in cortical thymocyte differentiation during the first week of CSA treatment are the major determinants of the extent of emigration of cortical thymocytes to the peripheral lymphoid tissues. Thus, it appears that in those animals in which the imposition of the block is rapid and complete, few TdT\(^+\) cortical thymocytes leave the thymus, whereas in those animals in which the block initially is "leaky," large numbers of cortical thymocytes emigrate.

Nonetheless, it still is possible that the variable in the appearance of DP T cells in CSA-treated rats, observed here and in previous studies (26, 27), is due in part to differences in postthymic survival and/or proliferation of RTE in the peripheral lymphoid tissues of individual animals. Indeed, we have recently demonstrated that a large portion of the SP RTE in diabetes-prone, but not diabetes-resistant, BB/W strain rats disappear (apoptosis?) within 24 h of their release from the thymus (Hossein Zadeh, H., D. Greiner, and I. Goldschneider, manuscript in preparation). However, the inverse correlation between the decrease in thymocytes and the increase in RTE after CSA treatment, as well as the arithmetic (as opposed to geometric) accumulation of DP T cells with time, speaks against massive postthymic death and/or selective proliferation of surviving RTE in the present study.

It is also possible that CSA influences the appearance of phenotypically immature T cells by altering peripheral T cell development directly. This does not appear to be true, inasmuch as the present and previous results (37) show that thymectomy selectively causes a decline in Thy-1\(^+\) T cells that is neither prevented nor reversed by subsequent CSA treatment. Thus, our experiments demonstrate that, after permitting (or inducing) a burst of export of cortical thymocytes, CSA induces a delayed pharmacological "thymectomy" by preventing the continued export of any thymocytes. This conclusion is further supported by the report of Beschorner et al. (41), who showed that the elevated proportion of DP T cells in CSA-treated rats decreases markedly between 7 and 21 d after thymectomy and cessation of CSA treatment.

At first glance, it appears that the modest twofold increase in export of RTE in CSA-treated rats observed in Figs. 4 and 5 is insufficient to account for the marked increase in the proportion of DP T cells observed in Figs. 1 and 3 A. Therefore, it should be noted that the former figures record the accumulation of RTE over a 16-h period, whereas the latter figures record the accumulation over a period of 7 d. Thus, as we have previously observed in normal rats, although only 3-4% of LN T cells are replaced by Thy-1\(^+\) RTE every 24 h, \(\sim 20\% \) of total LN T cells are Thy-1\(^+\), due to the accumulation of differentiating RTE over a 7-d interval (37). Inasmuch as the 16-h export of RTE in CSA-treated rats exceeds that of untreated rats by a mean of 3% of total LN cells (Fig. 4), and inasmuch as most of these extra RTE have cortical thymocyte phenotypes (Fig. 5), an accumulation of \(\sim 4.5\% \) RTE above replacement levels every 24 h could readily produce the mean increases in DN LN cells observed in Fig. 3 A. Indeed, the linear increment of DP T cells as a function of time in Fig. 3 A can itself be best explained by the progressive accumulation of RTE after the onset of CSA treatment. The extent of the increase in DP T cells in individual animals would then depend on the duration of export of DP RTE from thymus and their fate in peripheral lymphoid tissues, both subjects of ongoing investigation.

The functional attributes of the novel subset of DP, Thy-1\(^{hi}\), TCR \(\alpha/\beta^{\text{low}} \), TdT\(^+\) RTE have not been investigated; neither has its long-term fate been determined. However, sev-
eral lines of evidence suggest that many of the cells exported from the thymus of CSA-treated animals may not have undergone or completed intrathymic selection. Thus, positive and negative selection of the TCR α/β T cell repertoire has been reported to involve DP cells that express intermediate levels of TCR (42); and postselection thymocytes are TCR hi (43). In contrast, CSA prevents the maturation of thymocytes to the TCR hi stage (13, 26). Also, CSA interferes with levels of TCK (42); and postselection thymocytes are TCR hi undergone or completed intrathymic selection. Thus, positive and evidence suggest that many of the cells exported from the thymus of CSA-treated animals may not have undergone or completed intrathymic selection. Thus, positive

tigens (16, 20); and self-reactive T cells occur in increased frequency in the peripheral lymphoid tissues of CSA-treated animals (14). It is possible that these events are causally related and are the consequence, at least in part, of CSA-induced damage to some of the thymic stromal cells that participate in intrathymic selection, such as medullary epithelial cells and interdigitating dendritic cells (20-25).

Perhaps the strongest evidence against intrathymic selection in CSA-treated rats is our observation that the great majority of the DP RTE express the enzyme TdT, which has been shown to be responsible for the generation of junctional diversity of gene segments in the generation of functional TCR molecules (44). In unpublished studies, we have found that such TdT + cortical thymocytes undergo rapid proliferation, whereas most of their TdT- progeny in the thymus cortex undergo apoptosis. This raises the possibility that the survivors of negative selection constitute a subset of TdT - cortical thymocytes. Furthermore, the notion that many of the cortical thymocytes that are exported from the thymus during CSA treatment are self-reactive is consistent with reports indicating that the thymus is essential for the induction of syngeneic GVHD and organ-specific autoimmune disease during the first 2 wk of CSA therapy, but not thereafter (4, 9).

Because CSA has been shown to enhance the deletion of superantigen-reactive T cells in the peripheral lymphoid tissues (45), presumably by extrathymic mechanisms of T cell repertoire selection (46, 47), it will be important to determine if CSA also affects the postthymic selection of the TCR repertoire to self-antigens. For if, as we postulate, some of the TdT + RTE described in the present study undergo extrathymic maturation without further selection mechanisms, autoreactive T cells could be generated and, in the absence of effective immunoregulation, permitted to function. If confirmed, this may prove to be one of the mechanisms by which GVHD and organ-specific autoimmune diseases are mediated in CSA-treated animals (3, 9, 43), despite conflicting evidence from other laboratories (8, 48). Moreover, since the CD45RC- T cell subset appears to play a protective role against GVHD in rats (49, 50), and since most CD45RC- T cells in normal rats are RTE and their immediate descendants (37), it is possible that the paucity of CD45RC- T cells in rats treated for >1 wk with CSA (our unpublished observations) may further expedite the development of syngeneic GVHD and other autoreactive disorders in these animals.

We thank Mrs. Frances Tausche for technical assistance, Mr. Jerome Murphy for flow cytometric analysis, and Mrs. Cathy Mitchell for secretarial assistance.

This work was supported in part by grant GM-38306 from the National Institutes of Health. H. Hossein Zadeh is a recipient of a National Research Service Award fellowship from the National Institute of Dental Research.

Address correspondence to I. Goldschneider, Department of Pathology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3105.

Received for publication 29 January 1993 and in revised form 1 April 1993.

References

