T Cell Receptor-independent CD2 Signal Transduction in FcR+ Cells

By Antonio R. N. Arulanandam,* Shigeo Koyasu,* and Ellis L. Reinherz†

From the Laboratory of Immunobiology, Dana-Farber Cancer Institute, and the Departments of *Pathology and †Medicine, Harvard Medical School, Boston, Massachusetts 02115

Summary

CD2 subserves both adhesion and signal transduction functions in T cells, thymocytes, and natural killer (NK) cells. In mature T lymphocytes, CD2-mediated signaling function apparently requires surface expression of T cell receptors (TCRs). In contrast, in CD2+CD3− NK cells and thymocytes, signal transduction through CD2 is TCR independent. To resolve this paradox and characterize TCR-independent triggering mechanisms, we transfected a human CD2 cDNA into a murine mast cell line, C1.MC/57 (FcεRI+, FcγRII+, FcγRIII+), which is known to produce interleukin 6 (IL-6) as well as release histamine in response to crosslinking of FcεRI. In the CD2 transfectant, a combination of anti-T112 + anti-T113 monoclonal antibodies (mAbs) induced a rise in intracellular free calcium ([Ca2+]i), IL-6 production, and histamine release. As expected, no activation was mediated by the same mAbs in C1.MC/57. F(ab)’2 fragments of the activatory combination of anti-T112 + anti-T113 mAbs induced IL-6 in the CD2-transfected mast cells, demonstrating an Fcγ receptor ectodomain-independent triggering mechanism. In addition, either intact anti-T112 or anti-T113 IgG alone, which failed to induce [Ca2+]i mobilization in the transfecnt, was able to induce IL-6 production. A mAb directed against both FcγRII (previously denoted as FcγRIIb) and FcγRIII (previously denoted as FcγRIIa) inhibits this induction. These results indicate that: (a) Ca2+ mobilization is not essential for IL-6 production; and (b) crosslinking of CD2 and Fcγ receptors via intact anti-CD2 IgG stimulates IL-6 production. Thus, CD2-mediated IL-6 production occurs by both Fc receptor ectodomain-independent as well as Fc receptor ectodomain-dependent mechanisms in these nonlymphoid cells. Northern blot analysis demonstrates that although the mast cells do not express CD3ζ or CD3ε mRNA, they express FcεRIγ mRNA. The latter is a known component of FcγRIII as well as FcεRI, has significant homology to CD3ζ/ε, and is thought to have a signal transduction function. In these mast cells, CD2 signaling machinery does not require CD3ζ/ε and may be linked to the FcεRIγ subunit. We predict that this subunit or a related structure may confer a TCR-independent signal transduction pathway upon CD2 in CD3− NK cells, thymocytes, and certain B lymphocytes.

The CD2 (T11 structure) has been shown to play an important role in the function of both thymus-derived T cells and NK cells (1, 2). mAbs directed against an epitope (T11i) within the NH2-terminal adhesion domain of CD2 block the ability of T cells (3–5), thymocytes (6), and NK cells (4) to interact with the LFA-3-expressing cognate partners. Predictably, therefore, helper and cytotoxic T cell responses, thymocyte-epithelial conjugate formation, and lytic effector function of NK cells are reduced or eliminated by such mAbs. Also, the adhesion function of CD2 molecule has been shown to directly contribute to the T cell recognition of nominal antigen (7, 8). In addition to the adhesion function of CD2, mAbs directed at a second adhesion domain epitope (T11z), in concert with a mAb specific for an epitope (T11i) within the membrane proximal domain, activate T lymphocytes (3, 4), thymocytes (9), and NK cells (4). Moreover, the cellular CD2 ligand LFA-3 itself, in conjunction with anti-T113 mAb, can activate T cell responses (10). Collectively, these findings indicate an important role for CD2, not only in functioning as an adhesion structure, but also as an activation receptor.

The signal transduction function of CD2 is dependent on its CD2 cytoplasmic tail (11–13). Truncation analysis and site-directed mutagenesis have pinpointed a region between amino acid residues 253 and 287 that is necessary for IL-2 gene induction and increase in intracellular free calcium ([Ca2+]i) (11). Disruption of a single histidine and arginine at positions 264 and 265 within the first of two tandem PPPGHR repeat sequences can abrogate or dramatically reduce T cell activation (14). The activation of T lineage cells via CD2 is also dependent on other cellular structures. In this respect, studies conducted on a TCR− variant of the human T cell

Abbreviations used in this paper: [Ca2+]i, intracellular free calcium; PTK, protein tyrosine kinase.
tumor line Jurkat lacking Ti β transcripts showed that such cells could not be stimulated via CD2 (15). Reconstitution of TCR surface expression in these Jurkat mutants by Ti β gene transfection restored CD2 triggering function. These findings directly demonstrate that the CD2-mediated signal transduction pathway is dependent on the expression of TCR and that both TCR and CD2 activation pathways in T cells are interconnected. Two indirect lines of evidence also support this notion in T lymphocytes. First, prior crosslinking of TCR inhibits subsequent CD2-mediated activation (16–18). Second, subunit concentrations of anti-TCR mAbs and anti-CD2 mAbs, which independently fail to activate T cells, in combination induce T cell proliferation (19). The importance of TCR expression for CD2 signal transduction function has been further emphasized by the failure of CD2 to trigger activation events when transfected and expressed in SF9 (Spodoptera frugiperda) worm gut epithelial cells (20) or murine fibroblasts (21).

Despite the dependence of CD2 function on surface TCR expression in T lymphocytes, both thymocytes and NK cells that lack surface TCR can be triggered upon CD2 stimulation to increase \([Ca^{2+}] \) and mediate cytotoxic activity, respectively (4, 9). The basis of this seemingly paradoxical TCR-independent CD2 signal transduction function is unknown, although we have speculated that it may result from the coupling of CD2 to other transduction elements in NK cells (1). A likely candidate that might functionally interact with the CD2 pathway in these CD2 ‘CD3 - NK cells is FcγRIII (CD16). CD16 has recently been shown to be physically associated with CD3ζ (22, 23) and is also thought to associate with the \(\gamma \) subunit of FcεRI (FcεRIγ) (24). The latter is a component of the tetrameric high affinity IgE receptor expressed on mast cells and basophils (25), whose broader tissue distribution is only now becoming apparent (26). Interestingly, CD3ζ and FcεRIγ belong to the same gene family located on murine chromosome 1 and are homologous at the primary sequence level (27, 28). Thus, TCR-independent CD2 signal transduction might be linked to either CD3ζ or FcεRIγ or both.

To investigate these possibilities, we transfected a human CD2 cDNA into murine mast cells that express FcεRIγ as a component of their FcεRI as well as FcγRIII (previously denoted as FcγRIIa in mouse) and examined the ability of CD2 to trigger \([Ca^{2+}] \) increase and IL-6 production. The results demonstrate that CD2 is competent to transduce signals in mast cells, hence proving that TCR expression and/or lymphoid phenotype is not required for CD2 function. Moreover, because the mast cell line lacks both CD3ζ and CD3γ mRNA, neither CD3ζ nor CD3γ is required for CD2 signaling.

Materials and Methods

Cell Lines and Transfection of Human CD2. A \(\varphi - 2 \) helper-free retrovirus packing cell line, which has been transfected with the expression vector DOL carrying both the neomycin resistance gene and a cDNA of human CD2, was used to generate virus stocks for the infection of mast cells (11). A growth factor–independent mast cell line, C1.MC/57 (denoted as MC/57 in the text below), derived from C57BL/6j mouse bone marrow was a kind gift from S. Galli (Beth Israel Hospital, Boston, MA) (29). MC/57 mast cells were maintained in DMEM (Whittaker MA Bioproducts, Walkersville, MD) supplemented with 10% heat-inactivated FCS (Sigma Chemical Co., St. Louis, MO), \(5 \times 10^{-5} \) M 2-ME (Sigma Chemical Co.), 2 mM t-glutamine, and 1% penicillin-streptomycin (Gibco Laboratories, Grand Island, NY). Procedures for the growth of \(\varphi - 2 \) cells, harvesting of virus, and infection of MC/57 mast cells were performed as described (11). The MC/57 mast cell line was infected with freshly derived virus stocks in the presence of \(8 \mu g/ml \) polybrene (Aldrich Chemical Co., Milwaukee, WI), and selection was initiated 48 h later in 2 mg/ml of G418 (geneticin; Gibco Laboratories). The G418-resistant colonies were screened by indirect immunofluorescence as described below. Additional cell lines used in this study, 2B4.11 and MA5.8, were provided by J.D. Ashwell (NIH, Bethesda, MD), and MH60.BSF2 was a gift from T. Hirano and T. Kishimoto (Institute for Molecular & Cellular Biology, Osaka University, Osaka, Japan) (30).

Flow Cytometric Analysis. Phenotypic analyses were performed using indirect immunofluorescence assays. 10⁴ cells were analyzed in each sample on an Epics V cell sorter, and results were expressed as histograms displaying number of cells vs. fluorescence intensity on a log scale. A 1:400 dilution of ascites containing IgE anti-DNP mAbs (31) (H1-DNP-E-26, provided by S. Galli), a 1:200 dilution of ascites containing either anti-T111 (3P2H9, IgG1) (3), anti-T111 (Iod24C1, IgG2a) (3), or anti-T112 (Imono2A6, IgG3) (3) mAbs, and culture supernatant containing monoclonal anti-CD2 (AF6-88.5.3, IgG2a, kindly provided by K. Rock, Dana-Farber Cancer Institute) (32) were used in this study. Saturating amounts of an anticolonotyptic mAb, IC5 (IgG1 derived in our lab; 1:200 dilution of ascites), was used as a control to subtract background Fcγ receptor binding. Cells incubated with the above mAbs for 30 min at 4°C were washed with HBSS containing 2% FCS. The antibody bound was detected with a 1:40 dilution of fluoresein-conjugated goat anti-mouse IgG (H + L) second antibody (Whittaker MA Bioproducts) by using the Epics V cell sorter. CD2 transfectants were sorted for higher levels of CD2 expression on the Epics V cell sorter by staining using 5 × 10⁴ cells as described above.

Determination of Cytosolic-free Ca²⁺ by Indo-1 Fluorescence. \([Ca^{2+}] \) was determined according to Grynkiewicz et al. (33). Briefly, 2 × 10⁶ cells were suspended in 200 µl of DMEM containing 10% FCS and 2 µg/ml acetoxy methylester of Indo-1 (Molecular Probes, Eugene, OR) for 30 min at 37°C. Cells were then washed up to 1 ml with DMEM containing 10% FCS and kept at 37°C before analysis on the Epics V cell sorter. For determination of triggering through FcεRI, cells were incubated with a 1:400 dilution of ascites containing IgE anti-DNP mAb for 30 min at room temperature and washed twice as described above before loading with Indo-1. The ratio of Indo-1 fluorescence at 410 nm to that at 480 nm was recorded in real time and expressed in arbitrary units, each of which represents ~200 nM \([Ca^{2+}] \). Samples were analyzed at room temperature by running the Indo-1-loaded cells on the Epics V cell sorter for 1 min to establish a baseline before adding the following stimuli: 100 ng/ml DNP-BSA (Sigma Chemical Co.), a 1:1000 dilution of anti-T111 + anti-T111, or a 1:1000 dilution of anti-T112 + control mAb (anti-T8, 1m0n02E7, an IgG3 isotype-matched mAb for anti-T112). Cells that did not show \([Ca^{2+}] \) mobilization received 1 µg/ml of calcium ionophore A23187 (Sigma Chemical Co.). All concentrations indicated above are final concentrations of the respective stimuli.

IL-6 Production Assays. Quantitation of IL-6 secreted into the culture supernatant after stimulation of mast cells was analyzed by bioassay. 10⁴ mast cells were plated in 24-well plates and

Downloaded from jem.rupress.org on July 6, 2017
cubated at 37°C, 5% CO2, for 24 h with the following panel of stimuli: anti-T11e, anti-T11p, anti-T11s, control IgG3 (anti-T8, 1mono2E7, a control irrelevant isotype-matched mAb for anti-T11e), anti-T11p, anti-T11s, control IgG2a (anti-T1, 24T6G12, a control irrelevant isotype-matched mAb for anti-T11p), control IgG3, DNP-BSA, PMA, and media. All of the above-mentioned antibodies were protein A purified and incubated at a final concentration of 10 μg/ml. DNP-BSA and PMA were used at a final concentration of 100 ng/ml. Mast cells that were triggered through FccRI were incubated with IgE anti-DNP mAb for 30 min at room temperature and washed twice as described above before stimulation with DNP-BSA. For studies conducted on CD2 activation after Fcγ receptor blockade, a mAb, 2.4G2, that recognizes both mouse FcγRII and FcγRIII (34) (kindly provided by J.-P. Kinet, NIH) was used at 5 μg/ml either alone or in the presence of anti-T11e mAb. In other experiments, anti-T11p stimulation was tested in the presence of 10–100 μg/ml of control IgG2a isotype-matched mAb. Supernatants harvested after 24 h were titrated in triplicate in serial fivefold dilutions for their ability to support the growth of an IL-6-dependent murine hybridoma clone MH60.BSF2 (30). Simultaneously, triplicates of twofold serial dilutions of rIL-6 (a kind gift of Ajinomoto Co., Inc., Tokyo, Japan) were prepared. MH60.BSF2 cells cultured in RPMI containing 10% FCS and 200 μg/ml rIL-6 were washed and then cultured for 6 h before the assay in the absence of IL-6. Subsequently, 106 MH60.BSF2 cells were added to each well of 96-well plates (flat-bottomed) containing either dilutions of samples or rIL-6 and cultured for 44 h at 37°C, 5% CO2, and pulsed with 1 μCi/well [3H]thymidine (ICN Biochemicals Inc., Irvine, CA) during the last 7 h of incubation. The cells were harvested on glass fiber filter papers and incorporation of [3H]thymidine was determined by a liquid scintillation counter.

Results

Human CD2-mediated [Ca2+]i Changes in CD2-transfected Mast Cells. Next, the ability of CD2 to trigger a rise in [Ca2+]i in the MC/64.1 mast cell transfectant was examined.
To this end, changes in \([\text{Ca}^{2+}]_i\) triggered through FceRI and CD2 were assessed in Indo-1-loaded cells after specific antibody addition and subsequent receptor crosslinking. As shown in Fig. 2, a and c, crosslinking of the FceRI with monoclonal IgE anti-DNP and DNP-BSA (anti-DNP-IgE/DNP-BSA) resulted in a prompt increase in the level of \([\text{Ca}^{2+}]_i\) in both the parental MC/57 and CD2-transfected MC/64.1 mast cell lines, consistent with FceRI-mediated activation of a functional signal transduction machinery in both cell types (38). In contrast, as shown in Fig. 2, stimulation of MC/64.1 cells (d) but not MC/57 cells (b) with anti-T112 + anti-T113 mAbs resulted in an increase in the level of \([\text{Ca}^{2+}]_i\). The increase in \([\text{Ca}^{2+}]_i\) after addition of anti-T112 + anti-T113 mAbs is therefore attributable to CD2 expression on MC/64.1 cells. Note that a nonmitogenic combination of anti-T112 + control mAb (an irrelevant, IgG3 isotype equivalent to that of anti-T113 mAb) did not induce a measurable increase in the level of \([\text{Ca}^{2+}]_i\) in MC/64.1 cells (Fig. 2 e). Nevertheless, the MC/64.1 cells were efficiently loaded with Indo-1 as judged by the ability of the calcium ionophore A23187 to increase \([\text{Ca}^{2+}]_i\) (Fig. 2 e, arrowhead). These findings indicate that both T112 and T113 epitopes on the MC/64.1 mast cells need to be ligated by antibody in order to increase \([\text{Ca}^{2+}]_i\) mediated through CD2. Hence, these data are consistent with earlier studies in T cells, thymocytes, and NK cells, demonstrating that the addition of both anti-T112 + anti-T113 mAbs triggers a \([\text{Ca}^{2+}]_i\) flux (3–5, 9).

Table 1. IL-6 Induction in Mast Cells through Human CD2 or FceRI

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>IL-6 produced by:</th>
<th>Parental mast cell line (C1.MC/57)</th>
<th>CD2-transfected mast cell line (C1.MC/64.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>Exp. 1</td>
<td>Exp. 2</td>
<td></td>
</tr>
<tr>
<td>Anti-T112 + anti-T113 mAbs</td>
<td>0.7</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Anti-T112 + control IgG3</td>
<td>ND</td>
<td>1,200</td>
<td>ND</td>
</tr>
<tr>
<td>Anti-T113 mAbs</td>
<td>ND</td>
<td>1,100</td>
<td>ND</td>
</tr>
<tr>
<td>Control IgG2a</td>
<td>ND</td>
<td>1.1</td>
<td>ND</td>
</tr>
<tr>
<td>Control IgG3</td>
<td>ND</td>
<td>1.0</td>
<td>ND</td>
</tr>
<tr>
<td>Anti-H-2Db</td>
<td>ND</td>
<td>8</td>
<td>ND</td>
</tr>
<tr>
<td>Anti-DNP-IgE/DNP-BSA</td>
<td>170</td>
<td>110</td>
<td>860</td>
</tr>
<tr>
<td>PMA</td>
<td>2,400</td>
<td>2,100</td>
<td>2,100</td>
</tr>
</tbody>
</table>

The amount of IL-6 present in culture supernatants was assessed from the titration of culture supernatants and IL-6, as shown in Fig. 3, and is expressed in rIL-6 equivalents. Control IgG2a is a control mAb isotype matched for anti-T112. Control IgG3 is a control mAb isotype matched for anti-T113. SD of IL-6 concentrations were <20%. Results are representative of more than six experiments.
Somewhat unexpectedly, we observed that stimulation of MC/64.1 mast cells with either anti-T112 or anti-T113 mAbs alone also generated significant IL-6 production. As shown in Table 1, MC/64.1 mast cells stimulated with a combination of anti-T112 + control IgG3 (an irrelevant mAb isotype matched to anti-T113 mAb) produced a substantial quantity of IL-6 relative to MC/64.1 cells stimulated with media or parental MC/57 cells stimulated with a combination of anti-T112 + anti-T113 mAbs (1,200 ng/ml/10⁶ cells vs. 0.1-1.8 ng/ml/10⁶ cells). Similarly, as shown in Table 1 (Exp. 1), the stimulation of MC/64.1 mast cells with anti-T112 mAb alone induced the production of IL-6 comparable in magnitude with the amount produced by the combination of anti-T112 + anti-T113 (1,500 vs. 2,300 ng/ml/10⁶ cells). Likewise, the anti-T113 mAb by itself was capable of inducing MC/64.1 cells to produce IL-6. Note that the stimulation of MC/64.1 mast cells with either control IgG3 or control IgG3 mAbs resulted in little or no IL-6 production. Thus, in the MC/64.1 mast cells, crosslinking of more than one T11 epitope on CD2 is not an absolute requirement for the generation of signals leading to production of IL-6.

In this context, it is known that mast cells express Fcγ receptors including FcγRIII (39) to which the above mAbs could bind. To investigate Fcγ receptor ectodomain-independent signal transduction via CD2, anti-T112 and anti-T113 F(ab)'2 fragments were produced and MC/64.1 cells were cultured with a combination of anti-T112 F(ab)'2 + anti-T113 F(ab)'2. As shown in Table 2, this stimulation resulted in production of IL-6 (2,100-3,100 ng/ml/10⁶ cells), comparable with that observed with intact anti-T112 + anti-T113 IgG (Table 1). This result indicates that MC/64.1 cells can be activated with a combination of anti-T11 mAbs independent of Fcγ receptor ectodomain binding. Table 2 also shows that reduced but clearly significant IL-6 production was triggered by addition of anti-T113 F(ab)'2 alone and, to a lesser extent, by anti-T112 F(ab)'2. The amount of IL-6 induced with either one of the anti-T11 F(ab)'2 fragments (Table 2) was significantly less than the amount of IL-6 produced with any single intact anti-T11 mAb (Table 1). Thus, the binding of intact anti-T11 mAbs to FcγRII or FcγRIII as well as to CD2 in MC/64.1 cells apparently enhances induction of IL-6. In contrast, a mouse anti-H-2Db mAb, which is of the same IgG2a isotype as anti-T113, failed to induce any IL-6 production in MC/64.1 (Table 1), indicating that the mere binding of antibody to both H-2Db and Fcγ receptor molecules is not sufficient to trigger IL-6 production.

To more definitively examine the role of the Fcγ receptor in CD2-mediated IL-6 production, two types of blocking studies were performed. In the first experiment, mAb 2.4G2, which recognizes both FcγRII and FcγRIII (34), was added to the culture along with anti-T112 mAb. As shown in Table 3, 2.4G2 addition markedly reduced anti-T112-induced IL-6 production and was itself without any activatory effect. In a separate experiment, isotype-matched IgG2a control mAb used in 10-fold excess of anti-T112 mAb completely blocked IL-6 induction. Taken together, these findings show that the

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>IL-6 produced by MC/64.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp. 1</td>
</tr>
<tr>
<td></td>
<td>ng/ml/10⁶ cells</td>
</tr>
<tr>
<td>Media</td>
<td>0.4</td>
</tr>
<tr>
<td>T112 F(ab)'2</td>
<td>22</td>
</tr>
<tr>
<td>T113 F(ab)'2</td>
<td>580</td>
</tr>
<tr>
<td>T112 F(ab)'2 + T113 F(ab)'2</td>
<td>2,100</td>
</tr>
</tbody>
</table>

The methods are as described in the legend of Table 1. Exp. 1 with anti-T11 F(ab)'2 fragments was done in parallel with Exp. 2 of Table 1.
Table 3. Fcγ Receptor Ectodomain-dependent IL-6 Induction through Human CD2

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>IL-6 produced by MC/64.1 ng/ml/10^6 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td><0.5</td>
</tr>
<tr>
<td>Anti-FcγRII (2.4G2)</td>
<td>0.5</td>
</tr>
<tr>
<td>Anti-T112</td>
<td>440</td>
</tr>
<tr>
<td>Anti-T113 + anti-FcγRII (2.4G2)</td>
<td>33</td>
</tr>
<tr>
<td>Anti-T113 + control IgG2a (100 μg/ml)</td>
<td>1</td>
</tr>
<tr>
<td>Anti-T113 + control IgG2a (10 μg/ml)</td>
<td>690</td>
</tr>
<tr>
<td>Control IgG2a (100 μg/ml)</td>
<td><0.5</td>
</tr>
<tr>
<td>Control IgG2a (10 μg/ml)</td>
<td><0.5</td>
</tr>
<tr>
<td>PMA</td>
<td>1,100</td>
</tr>
</tbody>
</table>

10^6 MC/64.1 cells were incubated with either 5 μg/ml of mAb 2.4G2, which recognizes FcγRII and FcγRIII, or indicated concentrations of control IgG2a mAb for 45 min at room temperature. They were further incubated for 24 h in the presence or absence of 10 μg/ml of anti-T112 mAb.

CD2-mediated signal transduction pathway in MC/64.1 mast cells occurs via both Fcγ receptor ectodomain-binding independent and dependent mechanisms.

CD2Couplings to the Histamine Release Pathway in Mast Cell Transfectants. Stimulation of mast cells via the FcεRI receptor is known to induce histamine release. To determine whether CD2 stimulation couples to the histamine release pathway, MC/57.1 and MC/64.1 were stimulated with anti-T112 + anti-T113 mAbs or anti-T112 alone for 1 h and supernatants examined for histamine content by RIA. As shown in Table 4, a combination of anti-T112 + anti-T113 or anti-T112 alone showed stimulation to the same degree as stimulation by cross-linking of FcεRI by IgE/DNP-BSA in MC/64.1. Similar results were obtained when MC/64.1 was examined after 10 min of stimulation (data not shown). Note that, as expected, anti-CD2 mAbs had no effect on MC/57.1. These results in conjunction with the above studies demonstrate that CD2 couples to both IL-6 and histamine release pathways in mast cells.

Mast Cell Line MC/57 Does not Express CD3γ or CD3η. Recent biochemical analysis of human FcγRIII (CD16) on human NK cells reveals that CD16 is associated with the TCR CD3γ subunit (22, 23). In addition, it is thought that the FcεRIγ, which is homologous to CD3γ, associates with CD16 in human NK cells (24), and FcγRIII in murine macrophages and mast cells (26). We thus examined if murine mast cells expressing FcεRI and FcγRIII also express CD3γ or the related CD3η, since one or both might be involved in CD2-mediated signal transduction in the MC/64.1 mast cell line. To this end, Northern blot analysis was performed using specific cDNA probes for CD3γ, CD3η, and FcεRIγ, with RNA from the MC/57 parental mast cell line, a murine T cell hybridoma 2B4.11 known to express both CD3γ and CD3η and a 2B4.11 variant, termed MA5.8, that lacks CD3γ and CD3η (37). As shown in Fig. 4, MC/57, like MA5.8, lacks transcripts corresponding to CD3γ and CD3η. In contrast, and as expected, 2B4.11 contains transcripts of 2.0 and 1.8 kb, which correspond to CD3γ and CD3η, respectively (Fig. 4, a and c). On the other hand, MC/57 mast cells but not 2B4.11 or MA5.8 express a transcript of ~0.5 kb, which corresponds to the mRNA of FcεRIγ (Fig. 4, a). These results indicate that the MC/57 mast cell line can transmit signals via the transfected CD2 gene product in the absence of CD3γ or CD3η.

Table 4. CD2-mediated Histamine Release in Mast Cell Transfectants

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Histamine release nM/10^6 cells/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>8.7</td>
</tr>
<tr>
<td>Anti-T112 + anti-T113</td>
<td>8.0</td>
</tr>
<tr>
<td>Anti-T113</td>
<td>75.0</td>
</tr>
<tr>
<td>Anti-DNP-IgE/DNP-BSA</td>
<td>63</td>
</tr>
</tbody>
</table>

Supernatants from 10^6 mast cells stimulated for 1 h under various conditions were tested for histamine content by RIA as described in Materials and Methods. Results are representative of two experiments.

Figure 4. Northern blot analysis of CD3γ, CD3η, and FcεRIγ subunit gene expression in MC/57 mast cells (C57). 10 μg of total RNA isolated from the indicated cells was size fractionated on a 1% agarose gel containing formaldehyde and transferred to nitrocellulose. Subsequently, the filter was hybridized with a CD3η-specific probe, washed, and exposed at -70°C for 1.5 d with an intensifying screen (c). The filter was then stripped, reprobed with a CD3γ-specific probe, and exposed for 4 d (b). After stripping once more, the filter was hybridized with a probe for the FcεRIγ subunit and exposed for 2.5 d (a). Positions of ribosomal 28S and 18S RNAs are indicated.
Discussion

In an effort to better understand the nature of TCR-independent CD2 signal transduction, we performed CD2 transfection studies using mast cells as recipients. The latter were chosen based on the premise that Fc receptors might function in lieu of the TCR for transduction coupling to CD2 in some cells and to determine whether CD2 signal transduction might be operative in nonlymphoid cells. The present study provides new insight into both the signal transduction mechanism of CD2 and the pathway of IL-6 production and histamine release. Our results indicate that when human CD2 is expressed in mast cells, perturbation of the extracellular segment with a combination of anti-T112 + anti-T113 mAbs leads to an increase in [Ca^{2+}]_i, IL-6 production, and histamine release. IL-6 production can be mediated independently of the extracellular segment of Fcy receptor since F(ab')2 fragments of these same mAbs induced IL-6 production comparable with that obtained with intact mAbs. In addition, we observed that crosslinking of the CD2 with Fcy receptor using a single anti-T112 or anti-T113 mAb could also stimulate IL-6 production. Under these latter circumstances, the crosslinking apparently results from the Fc portion of the mAb binding to Fcy receptor and the antigen-binding sites of the same mAb ligating to CD2, thereby approximating CD2 and Fcy receptor structures.

Cytokine gene activation studies conducted on parental MC/57 mast cells by Burd et al. (38) with a panel of activating agents showed that the IL-6 gene activation can be induced independently of FceRI. Activation by PMA or Con A, as well as through FceRI, resulted in the induction of IL-6 mRNA as detected by Northern blot analysis. Interestingly, the calcium ionophore A23187 did not induce the IL-6 gene in these MC/57 cells, whereas translocation of protein kinase C by itself was sufficient for IL-6 gene induction, indicating that Ca^{2+} mobilization is not essential for IL-6 induction. In contrast to the failure of calcium ionophore to induce the IL-6 gene, it has been shown that a calcium ionophore is itself sufficient to mimic IgE-dependent histamine release in mast cells (40). These findings indicate that histamine release and IL-6 production utilize different signal transduction mechanisms in mast cells.

Additional evidence for a calcium-independent mechanism for IL-6 production was obtained from the present study. A single anti-T112 mAb that failed to induce Ca^{2+} mobilization in MC/64.1 cells was capable of inducing IL-6 in these same cells. On the other hand, the combination of anti-T112 + anti-T113 mAbs induces Ca^{2+} mobilization and IL-6. These results clearly indicate that IL-6 production is induced either in the presence or absence of Ca^{2+} mobilization. Although activation through CD2 produced less Ca^{2+} mobilization relative to activation via FceRI (Fig. 2 d compared with 2, a and c), the amount of IL-6 produced upon CD2 stimulation was significantly higher than IL-6 produced after activation through FceRI (Table 1). The dichotomy observed between Ca^{2+} mobilization and IL-6 induction through CD2 and FceRI may be explicable if several transduction pathways operate in parallel in the mast cell. It is likely that a Ca^{2+}-independent pathway plays a significant role in the induction of IL-6 after activation via either CD2 or FceRI. This pathway may include a Ca^{2+}-independent activation of protein tyrosine kinase (PTK), which has already been demonstrated in rat basophilic leukemia cells upon triggering through FceRI (41). It is thus possible that the MC/64.1 mast cells may utilize a PTK pathway for IL-6 induction. Interestingly, it was shown that tyrosine phosphorylation (in the absence of extracellular calcium) is not sufficient to induce histamine release and required the presence of calcium in the extracellular media. This finding is consistent with the fact that calcium mobilization in mast cells can lead to histamine release (40). However, the ability of anti-T112 mAb to trigger histamine release (Table 4) without a detectable increase in [Ca^{2+}]_i (Fig. 2) implies an additional complexity to the process of histamine release.

Our observations that an activatory combination of anti-T112 + anti-T113 mAbs causes calcium mobilization, production of IL-6, and histamine release on human CD2-transfected MC/64.1 cells in the absence of TCR expression (Fig. 2 d and Table 1) is somewhat analogous to the situation in CD3- thymocytes. Previous studies with thymocytes have shown that the same combination of anti-T112 + anti-T113 mAbs causes a mobilization of [Ca^{2+}]_i and IL-2R expression (9, 9a). Although the activation requirements for IL-2R expression and IL-6 induction are not directly comparable, TCR-independent human CD2 signal transduction in MC/64.1 cells and thymocytes results in both an early change in the ionic milieu of the cell and activation of gene programs. Moreover, the observation that a single anti-T112 antibody is incapable of mobilizing [Ca^{2+}]_i in these MC/64.1 mast cells (Fig. 2 e) is consistent with the activatory requirements of TCR-independent signaling in CD3- thymocytes (9).

The TCR-independent human CD2 signal transduction obtained with MC/64.1 cells is also reminiscent of the activation requirements in CD2+CD3- NK cells. Anti-T112 + anti-T113 mAbs activate NK cells to lyse their target (4). Moreover, F(ab')2 fragments of anti-T112 + anti-T113 mAbs, which activate MC/64.1 cells to produce IL-6 (Table 2), have also been shown to activate NK cells to lyse target (42). Thus, an Fc receptor ectodomain-independent mechanism of human CD2 signal transduction is operative in both MC/64.1 cells and NK cells. On the other hand, it should be noted that human NK cells express FcyRIII (CD16), and single anti-CD2 mAbs activate NK cells in the same way that a single anti-CD2 mAb can induce IL-6 production in MC/64.1 cells. For example, in one report, a single anti-CD2 mAb CLI-T1 was shown to induce cytolytic activity of CD3-CD16+ NK cells (5). In a second independent study, Annessetti et al. (43) showed that the addition of an anti-CD2 mAb 9.1 but not its F(ab')2 fragment to CD3-CD16+ NK cell lines resulted in cytolsis of targets. The observation of Fcy receptor ectodomain dependency in NK cell activation is consistent with our observation in mast cells that F(ab')2 fragments of either anti-T112 or anti-T113 mAbs were not as efficient as a single intact anti-T112 or anti-T113 mAb in inducing IL-6.
production in MC/64.1 cells (Tables 1 and 2). Perhaps more importantly, a mAb that recognizes both FcγRII and FcγRIII or excess control IgG2a isotype-matched mAb blocks anti-CD2-mediated activation of IL-6 production by a single anti-CD2 mAb in CD2-transfected mast cells. Hence, it is likely that the ectodomain of FcγRII, the murine homologue of human CD16 (44, 45), is involved in CD2 signal transduction when a single anti-CD2 mAb binds to CD2 in both mouse MC/64.1 and human NK cells. Crosslinking of H-2D\(^b\) molecules to Fcγ receptor failed to stimulate any significant amount of IL-6 (Table 1). Therefore, crosslinking of Fcγ receptors to other unrelated molecules is not necessarily capable of inducing activation. These results collectively indicate that activation pathways involving Fcγ receptor ectodomain-dependent and -independent mechanisms operate in TCR-independent activation through CD2.

Other studies have shown that Fc receptors on both mast cells and NK cells function as signal transduction molecules. Crosslinking of CD16 molecules (FcγRII) by certain anti-CD16 mAbs activate human NK cells (46). Similarly, crosslinking of the FcεRI on both the parental MC/57 and human cells and NK cells function as signal transduction molecules. Crosslinking of H-2D\(^b\) molecules to Fcγ receptor failed to stimulate any significant amount of IL-6 (Table 1). Therefore, crosslinking of Fcγ receptors to other unrelated molecules is not necessarily capable of inducing activation. These results collectively indicate that activation pathways involving Fcγ receptor ectodomain-dependent and -independent mechanisms operate in TCR-independent activation through CD2.

In addition to NK cells and thymocytes, murine B cells express CD2 in the absence of TCR (50). Although it is not known whether murine CD2 transmits activation signals, the fact that both murine and human CD2 are highly homologous and share a long cytoplasmic tail suggests that murine CD2 has a similar role in B cell activation (50, 51). In this respect, CD2 on murine B cells may also couple with signal transduction elements on Fcγ receptors or membrane immunoglobulins. The recent demonstration that the B cell antigen receptor of the IgM class is noncovalently associated with another subunit termed mb-1 (52), which has a cytoplasmic tail consisting of a motif shared between CD3 subunits and FcεRIγ (48, 53) (as described below), suggests that mb-1 may couple functionally to murine CD2 on B cells.

The FcεRIγ subunit of FcεRI also appears to be a component of murine FcγRIII (26) and human FcγRIII (CD16) (24), and bears significant homology to CD3\(\gamma/\eta\) (36, 47, 48). The localization of FcεRIγ and CD3\(\gamma/\eta\) subunit genes to mouse chromosome 1 (27, 28), their similar genomic and structural organization, and the sequence homologies between exon 2 encoding the transmembrane region of both genes and between the last two exons of the cytoplasmic domains suggest that they belong to a new family of genes that play a significant role in signal transduction (36, 47). The functional relevance of the primary sequence homology between CD3\(\gamma\) and the FcεRIγ subunit has been provided by a recent experiment in Xenopus oocytes showing that CD3\(\gamma\) can substitute for FcεRIγ in the assembly and surface expression of FcεRI (54). Moreover, a conserved amino acid motif (D or E) \(x\) \(x\) \(Y\) \(x\) \(x\) \(x\) \(x\) \(L\) \(x\) \(x\) \(x\) \(x\) \(Y\) \(x\) \(x\) \(L\) or \(I\)) is present in the cytoplasmic domains of receptor molecules such as FcεRIγ, CD3\(\gamma\), CD3\(\delta\), and mb-1 (48). Amino acid residues composing the motif (upper case letters and underlined: mouse FcεRIγ [DavYtgLntrsqrtbYat]; aa 62–79, mouse CD3\(\gamma\) [DgylaYaqLstatkdrtYda]; aa 118–135], mouse CD3\(\gamma\)/CD3\(\eta\) [EgyYnaLqdtkmveaYsel; aa 87–105], mouse mb-1 [EneYegLndddcsmYed]; aa 179–196] would be expected to lie on the same side of an \(\alpha\)-helical barrel if the cytoplasmic sequence formed an \(\alpha\) helix. As such, the residues could form a binding site for putative proteins involved in the generation of signals after receptor crosslinking. Therefore, it is possible that the FcεRIγ subunit shared between murine FcεRI and FcγRIII is involved in coupling with the CD2-mediated signal transduction pathway in MC/64.1 cells. It seems likely that the TCR-independent CD2 signalling machinery is linked to the FcεRIγ, CD3\(\gamma\), and/or CD3\(\eta\) and mb-1 subunits in some cells such as CD3\(^{-}\) NK cells, thymocytes, and murine B cells. Further analysis, including reconstitution of CD2-mediated signal transduction in TCR- Jurkat variants by transfection with CD16 or other Fc receptors, could provide additional evidence for this hypothesis.
References

