REGULATION OF INTERLEUKIN 6 RECEPTOR EXPRESSION
IN HUMAN MONOCYTES AND MONOCYTE-
DERIVED MACROPHAGES

Comparison with the Expression in Human Hepatocytes

By JOACHIM BAUER,*† TILMAN MARTIN BAUER,* THOMAS KALB,†
TETSUYA TAGA,§ GABRIELLA LENGYEL,§ TOSHIO HIRANO,§
TADAMITSU KISHIMOTO,§ GEORGE ACS,† LLOYD MAYER,†
AND WOLFGANG GEROK*†

From the *Medizinische Universitätsklinik, D-7800 Freiburg/Breisgau, Federal Republic of
Germany; the †Mount Sinai Medical Center, New York, New York 10029;
and the §University of Osaka, Osaka 565, Japan

IL-6 has been investigated under numerous designations by several laboratories
independently since 1980. Its multiple biological activities were identified through
these efforts (reviewed in reference 1). IL-6 was first described as a secretory product
of fibroblasts after induction for IFN-β, and was therefore designated IFN-β2 (2, 3)
and 26-kD protein (4). Other investigators later identified a factor involved in
terminal B cell differentiation synthesized by a virus-transformed T cell line (5).
This factor stimulated Ig synthesis in activated B cells and was called B cell differen-
tiation factor/B cell stimulatory factor 2 (BCDF/BSF-2)† (5). At the same time, a
monocyte- and fibroblast-derived factor required for the growth of B cell hybridoma
lines was described and designated as hybridoma/plasmacytoma growth factor (HPGF)
(6–8).

After IFN-β2, 26-kD protein, BSF-2 and HPGF were each cloned by recombinant
technology (3, 9–13), it became clear that they were in fact identical (14–17). Finally,
hepatocyte stimulating factor, a monocyte-derived product that induces the hepatic
acute phase response, was also discovered to be identical to IFN-β2/ BSF-2 (18). To
unify the large collection of names for the same molecule, the designation IL-6 was
proposed (19, 20) and agreed upon (21).

IL-6 is synthesized under inflammatory conditions primarily in peripheral blood
monocytes (6, 22–24), endothelial cells (25–27), and fibroblasts (2–4, 8, 10, 12, 28–34).
Under certain nonphysiological stimulatory conditions (e.g., leukemia virus trans-
formation or stimulation with phorbol esters), T cells have also been reported to
secrete IL-6 (5, 11, 20, 24). Two reports described synthesis in stimulated B cells

Abbreviations used in this paper: BCDF, B cell differentiation factor; BSF, B cell stimulatory factor;
CRP, C-reactive protein; HPGF, hybridoma/plasmacytoma growth factor; IMDM, Iscove’s modified
dulbecco’s medium; LAF, lymphocyte-activating factor; PE, phycoerythrin.

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn (Sonderforschungsbereich
154, Teilprojekt C8). J. Bauer held a research fellowship of the Deutsche Forschungsgemeinschaft. T. M.
Bauer is a recipient of a grant of the Fritz-Thyssen-Stiftung, Köln. Address correspondence to Joachim
Bauer, Medizinische Universitätsklinik, D-7800 Freiburg, FRG.

1 Abbreviations used in this paper: BCDF, B cell differentiation factor; BSF, B cell stimulatory factor;
CRP, C-reactive protein; HPGF, hybridoma/plasmacytoma growth factor; IMDM, Iscove’s modified
dulbecco’s medium; LAF, lymphocyte-activating factor; PE, phycoerythrin.

J. EXP. MED. © The Rockefeller University Press • 0022-1007/89/11/1537/13 $2.00 1537
Furthermore, a large number of tumor cells have been found to secrete IL-6 (20, 28, 32, 36). The main physiological functions of IL-6 are the differentiation of activated B cells to terminally maturated, Ig-secreting plasma cells (5, 11, 37, 38) and the induction of the hepatic acute phase response (18, 39-47). The latter is characterized by increased expression of acute phase proteins, such as C-reactive protein (CRP) and decreased synthesis of albumin. Additionally, IL-6 has been shown to play an accessory role in T cell activation (48, 49) and induction of hematopoiesis (50-52).

Although a large body of information has emerged on IL-6, the interaction of this molecule with its target cells is still poorly understood. Recently, an IL-6-R has been cloned (53). It is now possible to study the tissue distribution of this receptor and the regulation of its expression in order to gain a better understanding of the role of IL-6 within the network of inflammatory mediators. Previously, expression of IL-6-R mRNA has only been reported for nonphysiological or transformed cell lines (53). A recent study in the rat showed that 80% of intravenously administered, radiolabeled, human rIL-6 binds to hepatocyte membranes (54). This suggests the presence of an IL-6-R on these cells.

In this communication we report on the expression of the IL-6-R in normal human blood monocytes. It is shown how IL-6-R expression is regulated in these cells, which are known to be potent IL-6 producers. By comparing IL-6-R expression in human monocytes and human hepatocytes, we will demonstrate that the IL-6-R is subjected to tissue-specific regulation.

Materials and Methods

Endotoxin, Cytokines, and cDNA Probes. Endotoxin derived from Salmonella abortus equi was a generous gift of C. Galanos, Max-Planck-Institut für Immunbiologie (Freiburg, FRG). Human rIL-1β (5 x 10^7 U/mg LAF; purity 98.6%) was a generous gift of Biogen (Geneva, Switzerland). Human rIL-6 used in the experiments was either IL-6/BSF-2 (5 x 10^7 U/μg) or IL-6/HPGF (10^8 U/μg) (13), the latter being a generous gift of L. Aarden (Central Laboratory of the Netherlands Red Cross, Amsterdam). We compared IL-6/BSF-2 and IL-6/HPGF with respect to activity in the B9 hybridoma cell assay and found 1 U BSF-2 to be equivalent to ~200 U HPGF. The endotoxin content of all cytokines was <0.1 ng/ml stock solution, resulting in final concentrations of at least three magnitudes below that. cDNAs used in this study were a cloned BSF-2/IL-6 cDNA (pBSF2-38.1) (11) and a cDNA encoding human IL-6-R pBSF2R.236 (53). A cDNA for human α2-macroglobulin was a generous gift of A. Lundwall and L. Sottrup-Jensen (University of Aarhus, Denmark). CRP cDNA and albumin cDNA were gifts of G. Ciliberto (University of Naples, Italy) and R. Cortese (EMBL, Heidelberg, FRG).

IL-6. Biological activity of IL-6 was measured by its proliferative action on the murine hybridoma cell line B9 (22; generously provided by L. Aarden, Central Laboratory of the Netherlands Red Cross). Proliferation was measured by means of a colometric assay (55). Cells were maintained in Iscove's modified Dulbecco's medium (IMDM) supplemented with 5% FCS, 5 x 10^{-3} M 2-ME, penicillin, streptomycin, and 0.1% supernatant of a 24-h culture of human monocytes stimulated with endotoxin (100 ng/ml). For the assay, cells were harvested by centrifugation and washed four times in PBS with 5% FCS. 10^4 cells were seeded in flat-bottomed microtitre plates (Costar, Cambridge, MA) containing 100 μl of a serial twofold dilution in IMDM of the material to be tested. After incubation for 4 d, 50 μl of 1 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma Chemical Co., St. Louis, MD) was added to each well. After another 4-h incubation period, the supernatant was removed and blue formazan crystals were dissolved in 0.01 N HCl/ethanol. The absorbance at 570 nm was measured by a multiwell scanning spectrophotometer (Titertek
multiskan; Flow Laboratories, Inc., McLean, VA). 1 U/ml is defined as the concentration of IL-6 leading to half-maximal stimulation of the B9 cell line and equals ~1 pg/ml IL-6.

Human Monocyte-Macrophage Cultures. Human blood monocytes were isolated and cultured as described (56) with certain modifications (23). Briefly, buffy coat cells from healthy blood donors were diluted in PBS and centrifuged over Ficoll-Hypaque to separate mononuclear cells from granulocytes and red cells. These mononuclear cells were used for FACS analysis (as indicated, either directly or after a 24-h cultivation period). For the other experiments, monocytes were separated from lymphocytes by adherence. 3 × 10⁶ mononuclear cells/ml RPMI 1640 medium (supplemented with l-glutamine, antibiotics, 5 × 10⁻⁵ mol/liter 2-ME, and vitamins) plus 10% human AB serum were incubated for 60 min in plastic Petri dishes. The nonadherent cells were removed by gentle washings with warm (37°C) medium. More than 90% of the adherent cells were monocytes as revealed by morphology and phenotype analysis. For in vitro maturation, monocytes were incubated overnight in supplemented RPMI 1640 medium with 10% human AB serum, then removed from the dishes at 4°C by vigorous pipetting with a viability of 85-90% (as determined by exclusion of trypan blue) and placed into rectangular teflon bags (Biofolie 25; Heraeus, Hanau, FRG) at a concentration of 5 × 10⁵ cells/ml in supplemented RPMI 1640 medium containing 10% human AB serum, and cultured for different times. At days 3 and 5, fresh medium was added to the bags. For the experiments, macrophages were harvested from the bags and plated in 1640 RPMI medium as above. Between 50 and 80% of the cells that had been plated into the bags could be recovered. More than 90% of the cells recovered from the bags were subsequently adherent. After sedimentation, the few remaining nonadherent cells were removed by washing with the medium, resulting in 100% pure macrophage cultures. These cells were mature by virtue of strong staining for the maturation-specific surface antigen Max1 (56) (not shown). Complete absence of endotoxin has recently been discovered to be crucial for unimpaired and reliable monocyte-macrophage in vitro maturation (23, 57, 58). Therefore, all media and sera used were tested for trace amounts of endotoxins according to Northoff et al. (59). Strict observation of this requirement resulted in reproducible experiments with cells from different donors.

RNA Extraction and Northern Analysis. RNA was extracted according to the protocol of Chomczynski and Sacchi (60). For Northern blot hybridizations, 20 μg of total RNA was subjected to electrophoresis on a 1.2% agarose-formaldehyde gel for 6 h at 100 V and transferred to nitrocellulose filters (Schleicher & Schuell, Inc., Keene, NH) according to Maniatis et al. (61). Standardization was done with respect to 28 S and 18 S rRNA as well as by control hybridizations with a cDNA clone coding for the housekeeping protein glyceraldehyde phosphate dehydrogenase (62). Hybridizations were performed for 24 h with 3²P-labeled specific cDNAs (63) using 2 × 10⁶ cpm of labeled probe per milliliter hybridization buffer (6x SSC, 50% formamide, 0.02% Denhardt’s solution). Filters were exposed to Kodak XAR5 films at -70°C. The bands were scanned with a densitometer (E-C Apparatus Corp., St. Petersburg, FL).

Fluorescent Antibody Detection by FACS Analysis. Phycoerythrin (PE)-conjugated murine mAb Leu-M3, and FITC-conjugated HLe 1 were obtained from Becton Dickinson & Co. (Mountain View, CA). PE- and FITC-conjugated murine IgG2 myeloma proteins (Becton Dickinson & Co.) were used as control antibodies. The murine mAb MT18 (class IgG2b) (Hirata, Y., T. Taga, M. Hibi, N. Nakano, T. Hirano, and T. Kishimoto, manuscript submitted for publication) was used to detect the 80-kD IL-6-R. An unconjugated IgG2 murine anti-DNP mAb (DHK10.12, kindly provided by J. Unkeless, Mt. Sinai Medical Center, New York) served as control stain. Fluorescein-conjugated goat anti-mouse Ig was obtained from Cappel Laboratories (Malvern, PA). Mononuclear cells were separated by Ficoll-Hypaque centrifugation, washed three times in PBS-BSA (1%) with 0.01% sodium azide, and stained as previously described (64). Cells were fixed in formalin (1%) before FACS analysis. Staining was determined by analysis on an Epics C cyt fluorograph (Coulter Electronics, Hialeah, FL), individually gating on the two major cell populations by lateral and forward light scatter: a Leu-M3⁻/HLe¹ population (predominantly monocytes), and a Leu-M3⁺/HLe¹ population (predominantly lymphocytes). At least 2,000 cells were counted per sample. Isotype controls were performed in parallel for both direct and indirect test antibodies. Results are displayed graphically as two-dimensional log fluorescence, and numerically as percent fluorescence.
Hepatocyte Cultures. Primary hepatocyte cultures were prepared from fetal livers of human fetuses after legal abortion at 20 wk of gestation. The cultivation procedure has already been described (65). Hepatocytes used in this study were kept in Hams F12 medium/2% human AB serum containing 10^{-6} M dexamethasone, 10^{-7} M insulin, and 10^{-8} M glucagone. Absolutely endotoxin-free conditions were provided.

Results

Expression of the IL-6-R was studied in cultured human blood monocytes and monocyte-derived macrophages. All experiments were carried out at least three times with monocytes from different donors. Representative experiments are shown. Freshly prepared, unstimulated human monocytes express high levels of IL-6-R mRNA (Fig. 1 A, lanes 1 and 9). Upon stimulation with endotoxin, IL-6-R mRNA decreased markedly within 4 h (Fig. 1 A, lane 2) and remained at nearly undetectable levels for at least 16 h (Fig. 1 A, lanes 3 and 4). The effect of endotoxin was dose dependent, with only a slight repression at a concentration of 0.1 ng/ml and maximal effects between 10 and 100 ng/ml. Repression of IL-6-R mRNA was specific, as shown by a concomitant increase of IL-6 mRNA (Fig. 1 B, lanes 1-4), resulting in a reverse pattern of regulation of the receptor and its ligand in the same cell population.

When unstimulated monocytes were allowed to undergo in vitro maturation into macrophages, a gradual spontaneous decline of IL-6-R mRNA was observed (Fig. 1 A, lanes 9-12), whereas expression of α2-macroglobulin, serving as a marker of macrophage maturation (23, 57, 58), increased steadily (Fig. 1 B, lanes 9-12). When in vitro matured macrophages were treated with endotoxin, no significant changes in IL-6-R mRNA could be observed (Fig. 1 A, lanes 5-8). In addition, endotoxin was unable to induce strong IL-6 expression in mononuclear phagocytes after terminal maturation (Fig. 1 B, lanes 5-8).

Endotoxin causes monocytes to release a large number of inflammatory medi-
ators (for review, see reference 66), which in turn may act back on the monocyte. We therefore investigated whether substances produced by monocytes upon endotoxin treatment could replace its effect on IL-6-R expression. As shown in Fig. 2A, treatment of freshly prepared human monocytes with human rIL-1 was able to suppress IL-6-R expression (Fig. 2 A, lanes 1–5), whereas the expression of IL-6 was concomitantly induced (Fig. 2B, lanes 1–5). The time kinetics of IL-6-R mRNA down regulation were comparable with those seen after endotoxin treatment. The effect of IL-1 was dose dependent, showing only a slight repression with 10 U/ml and a maximal effect with 100–200 U IL-1/ml. In contrast to monocytes, in vitro matured macrophages were hardly responsive to IL-1 treatment with respect to both IL-6-R mRNA and IL-6 mRNA regulation (Fig. 2, A and B, lanes 6–9).

Like IL-1, human rIL-6 was also able to induce a reduction in IL-6-R mRNA levels in monocytes. As shown in Fig. 3, treatment of monocytes with 10^4 U/ml HPGF (equivalent to 50 U/ml BSF-2) induced a marked decrease in IL-6-R mRNA.

![Figure 2](image1.png)

Figure 2. Effect of IL-1 on IL-6-R and IL-6 mRNA levels in monocytes and monocyte-derived macrophages. RNA was extracted from monocytes (lanes 1–5) and monocyte-derived macrophages after 7 d of cultivation (lanes 6–9). Cells were either unstimulated (lanes 1, 6), or stimulated with 200 U/ml human rIL-1 for 1 h (lane 2), 3 h (lanes 3 and 7), 6 h (lane 8), 9 h (lanes 4 and 9), or 18 h (lane 5). 20 µg of total RNA/lane was subjected to Northern analysis as described in the legend of Fig. 1 and hybridized with ^32P-labeled IL-6-R cDNA (A) or IL-6 cDNA (B). Autoradiographic exposure time was 3 d for A and 1 d for B.

![Figure 3](image2.png)

Figure 3. Regulation of IL-6-R mRNA in monocytes by IL-6. RNA was extracted from unstimulated monocytes (lane 1) or cells after various times of IL-6 treatment (10^4 U/ml HPGF): 1 h (lane 2), 3 h (lane 3), 6 h (lane 4), 9 h (lane 5), and 18 h (lane 6). 20 µg of total RNA/lane was subjected to Northern analysis as described in the legend of Fig. 1 and hybridized to ^32P-labeled IL-6-R cDNA. The filter was autoradiographed for 5 d.
Slight effects of IL-6 were seen at 10^3 U/ml HPGF (equivalent to 5 U/ml BSF-2). Incubation of monocytes with IL-6 did not increase IL-6 mRNA levels (not shown).

Since the monocyte cultures used in our studies contained some 5–10% lymphocytes, we applied FACS analysis in order to see whether the IL-6-R mRNA detected in our experiments could be attributed to the monocytic population. For FACS analysis, mononuclear cells were examined either immediately after Ficoll centrifugation (Fig. 4, A–D) or after a 24-h incubation period (Fig. 4, E). Both lymphocytes and monocytes are recognized by the mAb HLe. The mAb Leu-M3 is directed against the monocyte-specific CD14 epitope. The total mononuclear cell population is shown in Fig. 4 A, and reveals a large granular (monocytes, Leu-M3+/HLe+), and a small, less granular subpopulation (lymphocytes, Leu-M3+/HLe+). The surface expression of IL-6-R was demonstrated on freshly isolated monocytes. 78% of Leu-M3+/HLe+ cells (monocytes) costained with the MT18 mAb (Fig. 4 C), whereas
only 9% of Leu-M3+/HLel+ cells (lymphocytes) revealed MT18 surface staining (Fig. 4D). After incubation in endotoxin-free culture medium for 24 h, surface MT18 immunofluorescence for Leu-M3+/HLel+ cells (monocytes) dropped to only 9% (Fig. 4E), reflecting the observed decrease of IL-6-R mRNA along in vitro maturation. These data were confirmed when IL-6-R mRNA was demonstrated in monocyte and lymphocyte populations after further purification (Fig. 5). IL-6-R mRNA signals in the lymphocyte preparation were several times weaker (as related to total cellular RNA) and could not be regulated by endotoxin.

Glucocorticoids are known to influence many inflammatory responses. We therefore examined the effect of glucocorticoid treatment on IL-6-R mRNA expression in monocytes (Fig. 6). Dexamethasone caused a transient and marked drop of IL-6-R mRNA within 3 h. After 7 h, mRNA levels increased slightly but were still below unstimulated control levels.

In contrast to monocytes, IL-6-R mRNA in hepatocytes is stimulated both by IL-1 and by IL-6 (Fig. 7A). Nearly no IL-6-R mRNA can be detected in unstimulated primary hepatocytes. However, the presence of an intact IL-6-R molecule on

![Figure 5. Comparison of IL-6-R mRNA levels in monocyte-enriched and lymphocyte-enriched cultures. RNA was extracted from unstimulated monocytes after repeated washing steps during 24 h of their initial adherence to plastic, resulting in further removal of lymphocytes (lane 1). These cells were therefore at day 2 in culture when harvested. Nonadherent mononuclear cells of the first adherence step were replated to plastic in order to achieve further purification from adhering monocytes. Nonadherent cells of the second adherence step represented a lymphocyte-enriched population from which RNA was extracted either directly (lane 3) or after 6 h of endotoxin stimulation (100 ng/ml) (lane 2). 20 μg of total RNA/lane was subjected to Northern analysis as described in the legend of Fig. 1 and hybridized with 32P-labeled IL-6-R cDNA. Autoradiographic exposure time was 5 d.](image)

![Figure 6. Decrease of monocytic IL-6-R mRNA levels upon treatment by dexamethasone. RNA was extracted from unstimulated monocytes (lane 1) or from cells after 3 h (lane 2) and 7 h (lane 3) of treatment by dexamethasone (10−7 M). 20 μg of total RNA/lane was subjected to Northern analysis as described in the legend to Fig. 1 and hybridized with 32P-labeled IL-6-R cDNA. Autoradiographic exposure time was 5 d.](image)
1544 INTERLEUKIN 6 RECEPTOR EXPRESSION IN HUMAN MONOCYTES

FIGURE 7. Expression of IL-6-R mRNA in human primary hepatocytes. Poly(A) RNA was prepared from fetal hepatocytes at day 4 in culture, subjected to Northern analysis (2.5 μg/lane), and hybridized with radiolabeled IL-6-R cDNA (A), CRP cDNA (B), and albumin cDNA (C). (A) Lanes 1-3, a time kinetics of IL-6-R mRNA induction by IL-6 compared with unstimulated cells (A, lane 1). IL-6-R mRNA is induced in cells stimulated with 100 U/ml of BSF-2/IL-6 for 12 h (lane 2), or 24 h (lane 3). (A) Lanes 4-6, a concentration kinetics compared with unstimulated cells (lane 4), 24-h stimulation with 10 U/ml of BSF-2/IL-6 (lane 5), or with 100 U/ml of BSF-2/IL-6 (lane 6). (A) Lane 7, conditions as in lane 6 except that cells were kept in the absence of glucocorticoids. (A) Lane 8, stimulation for 24 h with 100 U/ml of IL-1β. (B) Lanes 1-5 represent the same experimental conditions as in A, lanes 4-8. (C) Lane 1, unstimulated cells; lane 2, stimulation with 100 U/ml of BSF-2/IL-6 for 24 h.

the membrane of unstimulated hepatocytes was shown by IL-6-dependent induction of CRP (Fig. 7 B). The specificity of this response is shown by concomitant downregulation of albumin (Fig. 7 C). If glucocorticoids were omitted from the hepatocyte culture medium, IL-6-dependent induction of the IL-6-R was slightly less pronounced, indicating an opposite effect of glucocorticoids on IL-6-R expression in monocytes and in hepatocytes.

Discussion

In the past years, much has been learned about the pleiotropic biological activities of IL-6. Binding studies predicted the presence of an IL-6-R on resting T cells, activated B cells, and a number of cell lines, including lymphoblastoid cell lines, plasma cell lines, the histiocytic cell line U937, the promyelocytic line HL60, an astrocytoma, and a glioblastoma cell line (67, 68). However, detailed studies of the IL-6 target cells required the characterization of the IL-6-R. Recently, the IL-6-R has been cloned (53), and antibodies directed against this receptor have been developed (Y. Hirata, manuscript submitted for publication). The IL-6-R has been shown to be a single 80-kD molecule (69). If the ligand is bound to the 80-kD protein, the latter associates with a second membrane-bound protein of 130 kD, resulting in the signal transduction into the cell (69).

We have shown that unstimulated monocytes of healthy individuals express IL-6-R mRNA and that these cells carry the 80-kD receptor molecule on their surface. Upon stimulation with endotoxin, IL-1, or IL-6, the expression of IL-6-R mRNA is downregulated. These data suggest that the IL-6 secretion by monocytes under inflammatory conditions is accompanied by a decrease of their IL-6-R mRNA levels.

Until now, expression of IL-6-R mRNA has only been shown for a number of leukemic cell lines (53). It has also been reported that simultaneous expression of IL-6 and its receptor in plasmocytomas may constitute an autocrine stimulatory
loop resulting in uncontrolled proliferation (36, 70). We can now present an example of IL-6-R expression in a nonproliferating cell type that is known to be a potent IL-6 producer. However, downregulation of the monocytic IL-6-R at a time when IL-6 expression is induced may represent a protective mechanism against autocrine stimulation.

The physiological function of the monocytic IL-6-R remains to be elucidated. We found that treatment of monocytes with IL-6 results in an induction of α1-antitrypsin expression, revealing one of the possible functions of the monocytic IL-6-R. Induction of α1-antitrypsin in monocytes by IL-6 has recently been confirmed (D. H. Perlmutter in reference 21). In addition to the regulation of IL-6-dependent genes, expression of the IL-6-R on monocytes during noninflammatory homeostasis could indicate that monocytes may play a role in binding trace amounts of circulating IL-6.

Downregulation of the IL-6-R upon stimulation is a tissue-specific event. The differential regulation of the IL-6-R in human monocytes and hepatocytes may shed some light on an interesting biological mechanism: monocytes could bind IL-6 on their surface during noninflammatory homeostasis, thereby protecting other target cells from IL-6 activity. As soon as an inflammatory situation develops, the target for IL-6 is shifted from the monocyte to the hepatocyte and presumably to activated lymphocytes.

Summary

IL-6 is a cytokine with pleiotropic biological functions, including induction of the hepatic acute phase response and differentiation of activated B cells into Ig-secreting plasma cells. We found that human peripheral blood monocytes express the IL-6-R, which is undetectable on the large majority of lymphocytes of healthy individuals. Stimulation of monocytes by endotoxin or IL-1 causes a rapid downregulation of IL-6-R mRNA levels and a concomitant enhancement of IL-6 mRNA expression. IL-6 itself was found to suppress the IL-6-R at high concentrations. A gradual decrease of IL-6-R mRNA levels was observed along in vitro maturation of monocytes into macrophages. We show that downregulation of IL-6-R mRNA levels by IL-1 and IL-6 is monocyte specific, since IL-6-R expression is stimulated by both IL-1 and IL-6 in cultured human primary hepatocytes. Our data indicate that under noninflammatory conditions, monocytes may play a role in binding of trace amounts of circulating IL-6. Repression of monocytic IL-6-R and stimulation of hepatocytic IL-6-R synthesis may represent a shift of the IL-6 tissue targets under inflammatory conditions.

We thank Dr. Barry Drees for critical reading of this manuscript.

Received for publication 5 April 1989 and in revised form 13 July 1989.

References

INTERLEUKIN 6 RECEPTOR EXPRESSION IN HUMAN MONOCYTES

1548 INTERLEUKIN 6 RECEPTOR EXPRESSION IN HUMAN MONOCYTFS

44. Ramadori, G., J. Van Damme, H. Rieder, and K. H. Meyer zum Büschenfelde. 1988. Interleukin-6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1β and tumor necrosis fac-

