INDUCTION OF λ_1-IMMUNOGLOBULIN IS DETERMINED BY A REGULATORY GENE (r_{λ_1}) LINKED (OR IDENTICAL) TO THE STRUCTURAL (c_{λ_1}) GENE

BY RUTH EPSTEIN,* KATHERIN LEHMANN‡, AND MELVIN COHN‡

From the Developmental Biology Laboratory, Salk Institute, San Diego, California 92138

The expression of the λ_1-immunoglobulin light chain has been attributed to a gene, r_{λ_1}, which acts in cis to the structural gene, and for which alleles exist that produce different λ_1-phenotypes (1). We demonstrate here that the r_{λ_1}-locus is tightly linked to (or identical with) the structural gene c_{λ_1}, which encodes the constant region of λ_1 light chains. This finding raises fundamental questions about regulation of the expression of the gene loci encoding the light (L) and heavy (H) chain immunoglobulin subunits.

Mice exhibiting the $r_{\lambda_1}^+$-phenotype (e.g., SJL, SJA) express a serum level of λ_1-Ig at least 30 times lower than that observed in $r_{\lambda_1}^-$ strains (e.g., BALB/c). Heterozygotes express a level of serum λ_1-Ig intermediate between that of the parents, thus demonstrating a gene dosage effect. Moreover, although mice of the $r_{\lambda_1}^+$-phenotype, respond to the immunogen $\alpha(1,3)$dextran (B1355) uniquely in the λ_1 class, they respond in a “patchy” manner, whereas mice expressing $r_{\lambda_1}^-$ respond uniformly to this antigen, yielding a high titer antibody. These data suggest that the r_{λ_1} locus controls either the number of virgin B cells expressing λ_1-Ig or their inducibility, and the r_{λ_1} locus is expressed in cis to the structural λ_1-gene (1).

The structural λ-genes map on chromosome 16 of the mouse (2). Their order is not firmly established (3), but the $\lambda_{2,4}$ cluster is thought to lie 5' to the $\lambda_{3,4}$ cluster (4, 5). The recent availability of c_{λ_1} gene markers (reference 6, and B. Blomberg, personal communication), as well as a family of BALB/cKe(C) × SJL/J(J) recombinant inbred strains has enabled us to address the question of the linkage between the structural (c_{λ_1}) and regulatory (r_{λ_1}) loci.

A polymorphic marker in the constant region of the structural gene for λ_1 has been identified both at the protein (7, 8) and DNA level (reference 6, and B. Blomberg, personal communication).

A comparison of the DNA sequences of BALB/c and SJL/J λ_1 structural genes revealed only one difference, which is in the constant region (reference 6, and B. Blomberg, personal communication) and corresponds to the allotype difference observed at the protein level. In the SJL/J mouse, a G → T transversion in codon 155 (GGT) of c_{λ_1} results in a replacement of the glycine present in BALB/c λ_1 by a valine (GTT). The consequence of this mutation is the loss in SJL/J of a cleavage site present in BALB/c for the restriction endonuclease KpnI. No further differences

* Supported by grant CA-09174 from the National Institutes of Health.
† Supported by grant A-10575 from the National Institute of Allergy and Infectious Diseases.

J. Exp. Med. © The Rockefeller University Press • 0022-1007/83/05/1681/06 $1.00
Volume 157 May 1983 1681-1686
between these two strains could be detected by heteroduplex analysis (6). The absence of any sequence differences 5' to \(v_x\) implies that altered \(\lambda_1\) levels are not due to changes in transcription arising from a structural modification in the promoter region. Also identical are the fusion sequences 3' to \(v_x\) and 5' to \(\lambda_1\), and the RNA processing recognition sequences for the two introns \(\lambda_1-v_x\) and \(\lambda_1-\lambda_1\). That the \(r_{\lambda1}^{lo}\)-phenotype arises from either inversions of \(v_x\), \(\lambda_1\), and \(\lambda_1\), or from large insertions or deletions also appears to be excluded.

It should be stressed that the gly/val interchange does not affect detectably the behavior of the corresponding \(\lambda_1\)-Ig secreted in serum. The specificity (apparent affinity), idiotype, complement fixation, and stability characteristics of BALB/c and SJA \(\lambda_1\)-Ig are indistinguishable (1).

The principle of our mapping is the following: we have used a monoclonal rat-anti-mouse \(\lambda_1\) to assay the \(\lambda_1\)-Ig levels in the serum, and from this infer which \(\alpha_1\) allele is expressed by each strain of the \([\text{BALB/cKe(C)} \times \text{SJL/J}]\) recombinant inbred family. The \(\alpha_1\) allele expressed by each strain was determined in two ways: (a) serum from each recombinant inbred was allotyped, and (b) liver DNA from each strain was tested for the presence of the KpnI cleavage site via the method of Southern (9).

Materials and Methods

Mice. BALB/cKe, SJL/J (the latter originally obtained from The Jackson Laboratory, Bar Harbor, ME), and SJA mice (a gift from Dr. Roy Riblet) were bred at the Salk Institute. Recombinant inbred mice were constructed by standard methods (10) (Table I).

Identification of Restriction Fragments. 40 \(\mu\)g of liver DNA, prepared by procedure B described by Cory et al. (11), was fractionated by horizontal agarose gel electrophoresis. DNA was blotted according to the method of Southern (9) as modified by Alwine (12) and hybridized (13) to a purified \(\alpha_1\) probe (a gift of Dr. Bonnie Blomberg).

Antisera. Culture supernatants from hybridomas Ls136 [SJL anti-\(\lambda_1\) (16)] and L22.18.2 [rat anti-\(\lambda_1\) (17)] were cut with 45% ammonium sulfate and purified over Sepharose-4B protein A columns.

Rabbit antisera (anti-\(\alpha_1\), anti-\(\kappa\), anti-\(\mu\), and anti-\(\gamma\)) and myeloma proteins used for standards \([\text{J588}^{\lambda_1}A], \text{MOPC}104E(\lambda_1\mu), \text{Y578}(\kappa\gamma)\] were purified as described previously (15).

Enzyme-linked Immunosorbent Assay (ELISA). Polyvinyl plates (Cooke, 1-220-25), coated with 0.5 \(\mu\)g of Ls136/7 (16) or 0.25 \(\mu\)g L22.18.2 (17), were incubated overnight at 4°C. After unreacted sites were blocked by incubating plates 1 h with 1% bovine serum albumin (BSA) in phosphate-buffered saline (PBS), sera and standard proteins (250 to 0.5 ng) were added to the wells and incubated for 2 h at 37°C and washed with PBS. Alkaline phosphatase-conjugated antibodies (anti-\(\lambda\) or anti-\(\kappa\)) (18) diluted in PBS containing 1% BSA were added, and after overnight incubation at 4°C, followed by washing with PBS, 150 \(\mu\)g of \(p\)-nitrophenyl phosphate (Merck Chemical Div., Merck & Co., Inc., Rahway, NJ) was added to each well. The optical density was measured at 412 nm with a Titertek Multiskan Photometer 45 min later. Total immunoglobulin was measured as above with plates initially coated with rabbit anti-\(\mu\) or \(\gamma\).

Results

The Expression of \(\alpha_1\) in \([\text{BALB/cKe(C)} \times \text{SJL/J}]F_1\) Mice. Quantitation of the \(\lambda_1\)-Ig present in the serum of F1 mice (with L22.18.2 or Ls136) confirms that their \(\lambda_1\)-Ig level is intermediate between BALB/cKe and SJL/J mice (1). All of the \(\lambda_1\)-Ig is of the BALB/c type, i.e., \(r_{\lambda1}^{lo}\) and \(r_{\lambda1}^{lo}\) seem to be each expressed in \(cis\) to their respective structural \(\alpha_1\) genes.

Linkage of Structural and Regulatory \(\alpha_1\) Loci in \((C \times J)\) Mice. The total \(\lambda_1\)-level in serum from each recombinant inbred (RI) strain was assayed using L22.18.2 rat anti-\(\lambda_1\) (Table I). The identification of the structural gene present in each RI was assayed.
TABLE 1
Structural and Regulatory Gene Expression

<table>
<thead>
<tr>
<th>Strain</th>
<th>τ_{AL}-Allele determined (assayed with L22.18.2)</th>
<th>α_{AL}-Allele determined by presence of KpnI Site</th>
<th>H-2</th>
<th>Igh</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALB/cKe</td>
<td>C</td>
<td>C</td>
<td>d/a</td>
<td></td>
</tr>
<tr>
<td>SJL/J</td>
<td>J</td>
<td>J</td>
<td>s/b</td>
<td></td>
</tr>
<tr>
<td>(BALB/cKe x SJL/J)F1</td>
<td>C/J</td>
<td>C/J</td>
<td>d/s</td>
<td>a/b</td>
</tr>
<tr>
<td>SJA</td>
<td>J</td>
<td>J</td>
<td>s/a</td>
<td></td>
</tr>
<tr>
<td>C x J 1</td>
<td>C</td>
<td>C</td>
<td>d/a</td>
<td></td>
</tr>
<tr>
<td>C x J 3</td>
<td>J</td>
<td>J</td>
<td>s/a</td>
<td></td>
</tr>
<tr>
<td>C x J 4</td>
<td>C</td>
<td>C</td>
<td>d/a</td>
<td></td>
</tr>
<tr>
<td>C x J 6</td>
<td>J</td>
<td>J</td>
<td>s/a</td>
<td></td>
</tr>
<tr>
<td>C x J 8</td>
<td>C</td>
<td>C</td>
<td>d/a</td>
<td></td>
</tr>
<tr>
<td>C x J 9</td>
<td>J</td>
<td>J</td>
<td>d/a</td>
<td></td>
</tr>
<tr>
<td>C x J 10</td>
<td>J</td>
<td>J</td>
<td>d/b</td>
<td></td>
</tr>
<tr>
<td>C x J 11</td>
<td>J</td>
<td>J</td>
<td>d/b</td>
<td></td>
</tr>
<tr>
<td>C x J 13</td>
<td>J</td>
<td>J</td>
<td>s/b</td>
<td></td>
</tr>
<tr>
<td>C x J 15</td>
<td>J</td>
<td>J</td>
<td>s/b</td>
<td></td>
</tr>
</tbody>
</table>

C, BALB/c allele. J, SJL/J allele. C/J, the (BALB/c x SJL/J)F1 showed an intermediate level of λ_1-Ig in serum (assayed with L22.18.2) all of which was of the BALB/c λ_1^* type (assayed with Ls136) (see text). Calculation of linkage (19): During the successive generations of inbreeding in the preparation of an RI line, there are multiple opportunities for recombination between linked loci. The probability of fixing a recombinant genotype (R) is $4r/(1 + 6r)$ where r is the probability of recombination in a single meiosis. Since $r = R/(4-6R)$ and $R < 0.1$, $r < 0.029 \pm 0.008$. The τ_{AL}-allele was inferred from the phenotype determined by an ELISA using monoclonal L22.18.2 rat anti-mouse λ_1. Mice with $<5 \mu\text{g}/\text{ml} \lambda_1$-Ig were designated τ_{AL}, while those above $30 \mu\text{g}/\text{ml}$ were scored τ^*_{AL}. The λ_1 polymorphic marker was determined with monoclonal Ls136. The presence of the KpnI site was detected by Southern blot analysis.

using Ls136, SJL anti-λ_1. Only (C x J) RI 1, 4, and 8 demonstrated total levels of λ_1 comparable to that expressed by BALB/c mice. All others were similar to SJL in their low λ_1 level. All exhibited normal k levels. Only those RI strains exhibiting the BALB/c phenotype reacted with Ls136. Southern blot analysis confirmed that the BALB/c structural gene was present in these strains (Fig. 1). The DNA from (C x J)RI 1, 4, and 8 were of the BALB/c type exhibiting a 4.1-4.2 kb BALB/c band due to the presence of the KpnI cleavage site. The DNA from the other (C x J) RI strains were of the SJL type exhibiting a band of size 7.9-8.1 kb due to the absence of this site. Therefore the structural gene τ_{AL} and the regulatory gene α_{AL} are linked within 2.9 map units (19).

Responsiveness of λ_1^{AT}-SJA to $\alpha(1,3)$-Dextran is Not Due to a Somatic Mutation. Since SJA is capable of mounting a patchy λ_1 response to $\alpha(1,3)$-dextran (B1355), analysis of this antibody with Ls136 should test directly whether a somatic reversion in the α_{AL} region accounts for its expression. If such a mutation (val \rightarrow gly) permitted λ_1 expression, the antibody induced should express the polymorphic marker observed in τ^*_{AL} strains. Analysis of the anti-dextran produced by both SJA and RI strain 6 (also Igh* and τ^*_{AL}) showed the absence of reversion (Table II).

Discussion

The expression in cis and the tight linkage between the regulatory and structural loci permits consideration of only two types of explanation for the λ_1^{AT}-phenotype. (a)
The expression of λ_1-Ig is determined by the $G \rightarrow T$ interchange in codon 155 of the c_λ-gene. (b) The expression of λ_1-Ig is determined by a cis acting gene, $r_\lambda 1$, linked to (but distinct from) the c_λ-gene.

If the mutation $G \rightarrow T$ is responsible for the λ_1^{lo}-phenotype, then the corresponding glycine \rightarrow valine replacement at position 155 must affect the number of adult λ_1 expressing B cells capable of being induced (1). This could occur in two ways: (a) The formation of a complex between light and heavy chains has been postulated to stop further rearrangements in the differentiating B cell, resulting in the stable expression of Ig loci (Claverie, J.-M., and R. Langman, manuscript in preparation). A “stopless” state might arise when a gly/val interchange occurs, rendering this complex incapable of preventing further rearrangements at other loci. The consequence would be a reduction in the number of virgin λ_i expressing B cells. Those B cells that encounter antigen in the fleeting period during which they express λ_1-Ig would be induced to a stable memory state. This would account for the patchy response of SJA to dextran.

(b) Alternatively, the alteration in the structure of the λ_1-light chain could affect the signaling interaction of B cells with antigen, thus lowering the efficiency of induction. This too would lead to a patchy response. If the virgin B cell is more difficult to induce, then the triggering event must be mediated by a conformational change in the Ig receptor upon interaction with antigen, an interpretation that is in contrast to the generally held view that the triggering event arises from the aggregation of Ig receptors by antigen. This “inductionless” model is favored by the finding that newborn BALB/c (λ_1^+) and SJL/J (λ_1^{lo}) mice have equal numbers of λ_1-bearing B cells, but the number of BALB/c λ_1-bearing B cells increases while the SJL/J λ_1-bearing B cells decreases as the animals age (8).
If the λ_1^{lo}-phenotype is due to a closely linked cis-acting regulatory sequence or gene (r_{λ_1}), the λ_1-Ig receptor once expressed would behave identically during induction in both BALB/c and SJL mice. The patchy response would again be explained by an insufficiency of λ_1-bearing B cells. This might be the consequence of a mutation resulting in an altered DNA conformation or in a modification of a regulatory sequence by methylation. Since B cells in SJL and BALB/c newborns appear to express λ_1 at similar levels while adults are widely different (8), any alteration in conformation or methylation would have to be expressed as the animal matures.

While a regulatory alteration might affect both λ_1 and λ_2, the c_{λ_1} alteration is expected to affect only λ_1, with the proviso that if there were a failure to terminate rearrangements an increase in λ_2-bearing B cells might occur. λ_2 levels in the serum of adult SJL/J have been shown to be lower than are those in adult BALB/c (8, 20), and these observations led to the suggestion that the λ-phenotypes are due to T cell regulatory effects, “suppressive” or “helper” (8, 21). However, an effect on λ_2 of the r_{λ_1}-gene is questionable. The effect the r_{λ_1} on λ_2 is an order of magnitude less than that observed for λ_1, and there is no correlation in various mouse strains between λ_2 levels and the allele of r_{λ_1}, lo or +, which is expressed. Further, this suggestion does not explain why the specific control of λ_1 expression by T cells should be linked to the structural c_{λ_1}-gene.

Summary

The cis-acting gene regulating specifically the inducibility of λ_1-bearing B cells has been mapped within 2.9 cM of the structural gene. If the λ_1^{lo}-phenotype is due to the gly \rightarrow val interchange in c_{λ_1}, then an argument can be made that (a) the λ_1^{lo}-phenotype is due to inefficient induction of λ_1^{lo}-bearing B cells and (b) B cell triggering is dependent upon a conformational change in the Ig receptor upon interaction with antigen. If the λ_1^{lo}-phenotype is due to a regulatory sequence linked to the structural c_{λ_1}-gene, then it must control the expression of the λ_1-locus during development into adulthood, e.g., by an effect on methylation.

We thank Dr. Bonnie Blomberg for her generous assistance and advice and Dr. Rod Langman and Dr. Ed Palmer for their perceptive remarks.

Received for publication 28 December 1982 and in revised form 16 February 1983.
References

