ASSOCIATION OF SERUM HEMOLYTIC COMPLEMENT LEVELS WITH THE MAJOR HISTOCOMPATIBILITY COMPLEX IN CHICKENS*

By TRAN CONG CHANH, ALBERT A. BENEDICT, AND HANS ABPLANALP

(From the Department of Microbiology, University of Hawaii, Honolulu 96822 and the Department of Avian Sciences, University of California, Davis, California 95616)

The B blood group locus in the chicken (1) represents the avian counterpart of the major histocompatibility complex (MHC) of mammals. It is associated with allograft rejection (2), the graft-vs.-host reaction (3, 4), the mixed leukocyte reaction (5), and immune responsiveness to synthetic polypeptide antigens (6, 7). As yet, none of these functions can be assigned to any particular region within the B complex as has been done with the human (HL-A) and mouse (H-2) MHC (8). Therefore, to determine the genetic relationships of the B complex-associated functions, we were motivated to search for additional immunologic functions controlled by genes associated with the chicken MHC.

Also linked to HL-A in man (9) and to the Ss locus in the S region of the H-2 complex (10, 11) are genes which influence serum complement (C) levels. In this report we present the first evidence that the total hemolytic C level in chickens is controlled by a gene(s) associated with the MHC, thus providing further evidence that the B blood group locus is the avian homologue of the mammalian MHC.

Materials and Methods

Chickens. The genetic analysis was based on three highly inbred lines of White Leghorn chickens developed at the University of California, Davis, Calif., under continued full-sib mating with inbreeding coefficients in excess of 0.98 (7). The genotypes of lines 2, 3, and 7 are B6B6, B2B2, and B4B4, respectively, in accordance with the nomenclature of Briles (see reference 7). A segregating F2 generation for the B4 allele was produced based on original crosses of lines 2 × 7 in the case of F3-141, and 3 × 7 for F3-142. A third F2 type (F2-104) was obtained by crossing unlike F2 types; namely, F2-141 × F2-142. The three inbred lines, as well as first crosses, were repeated concurrently with the F2 generation, and concurrent F1 crosses are designated as F1-241 and F1-242, respectively. Matings for the production of F3 generations were planned in such a way as to obtain B4B4 homozygotes with corresponding heterozygotes carrying the B4 allele. A genetically unrelated commercial strain of White Leghorn chickens and 1-day-old cockerels obtained from a Honolulu hatchery also were used.

Sera. For determination of C levels, sera were obtained by allowing blood to clot at room temperature for 1-2 h followed by refrigeration at 4°C for 1-2 h. The sera were adsorbed five times with packed sheep erythrocytes at 4°C and stored at -70°C. For preparation of hemolysin, outbred

* This investigation was supported in part by Research Grant AI-05660 from the National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md., and in part by a University of Hawaii intramural research grant.
Table I

<table>
<thead>
<tr>
<th>Line</th>
<th>No.</th>
<th>CHs, U/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>249.8 ± 17.0*</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>272.4 ± 18.3</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>193.7 ± 10.5</td>
</tr>
<tr>
<td>Commercial outbreds</td>
<td>5</td>
<td>244.6 ± 14.6</td>
</tr>
</tbody>
</table>

* Mean ± SD.

Results

Adult birds from lines 2, 3, and 7 were selected at random without regard to age or sex and their sera were assayed for total hemolytic C. The sera of line 7 birds had 193.7 ± 10.5 CHs, U/ml, whereas the sera of lines 2 and 3 had 249.8 ± 17.0 and 272.5 ± 18.3 CHs, U/ml, respectively (Table I). There was no relationship between C levels and sex.

To determine whether the reduced C level of line 7 birds was related to age, the C levels of outbred cockerels and inbred cockerels and hens from ages 1 day through 7 wk were determined. As shown in Fig. 1, at 3 days of age the C levels of line 7 birds were significantly lower than those of lines 2 and 3; however, the mean level of the outbreds at this time was only slightly higher. By 2 wk, the C levels of the outbred birds were the same as line 2 and 3 and significantly higher than the line 7 levels. By 5 wk, the C levels for all lines leveled off so that by 6 wk the concentrations for all birds were about the same as those found in adult (1-yr-old) birds.

Sera from adult F1 hybrids, produced by crossing line 7 with line 2 and with line 3, were analyzed. The C levels were similar to those of lines 2 and 3 (255.7 ± 13.5 and 259.1 ± 13.0 CHs, U/ml, respectively) (Fig. 1). Second and third generation birds were obtained from crosses of the three inbred lines, and birds were selected on the basis of their homozygosity and heterozygosity for the B...
locus, as shown in Fig. 2. All hybrids which were homozygous for the line 7 \(B \) allele \((B^7B^7)\) had low C levels \((174.1 \pm 6.8 \text{ and } 171.0 \pm 8.9)\) regardless of whether they were derived from crosses between lines 7 and 2 or between lines 7 and 3. All sera from birds with the homozygous \(B \) allele of line 3 \((B^3B^3)\) and heterozygous at the \(B \) allele \((B^0B^3 \text{ and } B^3B^5)\) had levels of C comparable to the levels in parental lines 2 and 3. There was no association of C levels with the CS-1 7S immunoglobulin and lipoprotein allotypes (Table II).

Discussion

All line 7 birds assayed were found to have about 70% of the serum hemolytic C of lines 2 and 3 and outbred production line birds. Line 7 birds also are low
FIG. 2. Serum hemolytic C levels of F$_1$ chickens and their inter se (F$_3$) crosses. The F$_3$ hybrids were divided into subgroups according to their major histocompatibility genotypes. Each point is the mean of the number of chickens given in the brackets ± SD.

TABLE II

Relationship between Hemolytic C Levels and B Blood Group and Allotype Genotypes in Hybrids

<table>
<thead>
<tr>
<th>Hybrid line</th>
<th>Locus</th>
<th>Genotype</th>
<th>No. chickens</th>
<th>Low C level</th>
<th>High C level</th>
</tr>
</thead>
<tbody>
<tr>
<td>141 = (2 x 7)F$_3$</td>
<td>B</td>
<td>4/4</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6/4</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CS-1*</td>
<td>a/c</td>
<td>13</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>142 = (3 x 7)F$_3$</td>
<td>B</td>
<td>4/4</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/4</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/2</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>CS-1</td>
<td>b/c</td>
<td>22</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c/c</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>L$_1$</td>
<td>+</td>
<td>24</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>104 = (2 x 7) (3 x 7)F$_3$</td>
<td>B</td>
<td>4/4</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/4</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>L$_1$</td>
<td>+</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* S immunoglobulin allotype.
† Serum lipoprotein allotype (17).
antibody responders to the copolymer poly(1-Glu-Asp-Ala-H-Tyr-OH) (GAT), and the response to GAT also is associated with the MHC (7). Lest it be thought that line 7 birds are generally immunologically incompetent, they produce more antibody in response to limiting doses of bovine serum albumin than line 3 birds (18), and they synthesize levels of anti-dinitrophenyl antibodies comparable to outbreds (7). Furthermore, line 7 birds clearly had lower C levels throughout the period of maturation. The F1 hybrids, obtained by mating line 7 birds with either of the high C lines, had C levels comparable to lines 2 and 3. Therefore, the low C level appears to be a recessive trait.

The results show that the C level in the chicken is associated with the MHC as it is in mammals. All of the low C birds found in F3 generations had the B genotype of line 7 (B/B'). There was no overlap in the standard deviations of the CH50 values between these birds and the F3 birds with high C levels (B genotypes: B/B', B/B', and B/B'). Furthermore, there was no correlation between C levels in F3 birds with either the 7S immunoglobulin H-chain allotype linkage groups or a lipoprotein allotype.

In the mouse, the gene(s) responsible for the H-2-dependent differences in C levels is associated with the Ss-Slp locus (10, 11), and recently C4 was identified as the Ss protein (19, 20). In addition, C3 levels were somewhat associated with H-2 (21) and in man C2 deficiency was shown to be HL-A linked (9). At present, we do not know which C component(s) deficiency accounts for the reduced C levels in line 7 birds.

Finding the association between C levels and the MHC in the nonmammal strengthens the importance of the relationship between closely linked genes controlling histocompatibility, immune responsiveness, and C activity. It is unlikely that these immunological functions are linked by chance in species as different as chickens, mice, and men; and this linkage favors the view that this region has remained relatively unchanged over millions of years. Perhaps the C gene(s) of the MHC may prove to be the oldest component of the MHC in view of the recently described presence of C3 proactivator in starfish hemolymph (22).

We agree with the view of Pazderka et al. (23) that the chicken "is eminently suited" for a species-wide evaluation of the linkage between the MHC-associated functions because of the "many differently selected populations large and stable enough to permit prolonged and repetitive sampling." For these reasons the chicken also is suited for revealing the evolutionary genetic mechanisms affecting immunoglobulin structural genes as indicated by recent studies on allotypes by E. K. Wakeland in our laboratory.

Summary

The total hemolytic complement (C) levels in inbred line 7 chicks and adults were lower than C levels in inbred lines 2 and 3 and in outbred chickens of the same age. In all birds, adult levels of C were obtained in 5- to 6-wk-old chickens. Analysis of F1 and F3 generations clearly showed that the C level in chickens was determined by a dominant gene(s) associated with the major histocompatibility complex. Finding this association in a nonmammal strengthens the importance of the relationship between closely linked genes controlling histo-
compatibility, immune responsiveness, mixed leukocyte reaction, and C activity.

We thank Ms. Carla Mizumoto and Mr. E. K. Wakeland for their excellent help and advice in determining allotypes, and Ms. Jean Reid and Mr. Phillip Morrow for blood type determinations.

Received for publication 6 May 1976.

References