MULTIPLE INDIVIDUAL AND CROSS-SPECIFIC IDIOTYPES ON 13 LEVAN-BINDING MYELOMA PROTEINS OF BALB/c MICE

By ROSE LIEBERMAN, MICHAEL POTTER, WILLIAM HUMPHREY, JR., ELIZABETH B. MUSHINSKI, AND MARK VRANA

(From the National Institute of Allergy and Infectious Diseases and the National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20014)

Studies of immunoglobulin V-region antigenic determinants (idiotypes) are important in understanding the genetics and evolution of antibodies and the generation of antibody diversity. The finding of homogeneous immunoglobulins (myeloma proteins, Waldenstrom macroglobulins M-components) that bind the same hapten or antigen has added immeasurably to these studies. The best studied systems to date are the human IgM proteins that bind γ-globulin (1–3), and the IgM cold agglutinins (4–6) and the mouse phosphorylcholine (7–10), α1→2 and α1→6 dextran (11–16), levan-(11, 14) and galactan-(17) binding myeloma proteins. Generally in these studies two types of antigenic determinants or idiotypes have been found within a functional group, individual antigenic determinants (IdI) or idiotypic determinants specific for the homogeneous immunoglobulin within the group and cross-specific (IdX) or common idiotypic determinants which are shared among some of the functionally related proteins within a group but which are not or very rarely found among unrelated immunoglobulins. Structurally IdI and IdX are both located on the domains of the immunoglobulin molecule formed by the V_L and V_H polypeptides. Some idiotypic determinants are contiguous to or directly involve peptide segments or amino acids in the binding sites and the interaction of hapten with the homogeneous immunoglobulin may block the anti-idiotypic antibody (9, 14, 18). Other V-region idiotypic antigens are genetic in that within the species, they may be derived from polymorphic genes (8, 12, 19–21).

In this study we have examined the idiotypic determinants of the largest group of specific antigen-binding myeloma proteins found thus far in the mouse, namely, the levan-binding proteins. These proteins have been shown to possess two types of binding specificity, one group of 11 proteins binds fructosans such as inulin which are linear polysaccharides with β2→1 linkages and bacterial (Aerobacter) levan; the second group of two proteins binds determinants on bacterial levans which are probably fructosans with β2→6 linkages (11). This latter point has not yet been clearly established since appropriate oligosaccharide inhibitors are not yet available.

1 Abbreviations used in this paper: HA, hemagglutination; HI, hemagglutination inhibition; IdI, individual antigenic determinants; IdX, cross-specific determinants; LBMP, levan-binding myeloma proteins.
The idiotypic sera prepared to levan-binding myeloma proteins (LBMP) were unusual in that they identified a large number of IdX in addition to the usual individual idiotypes. The IdX of LBMP indicated the close relationship of this family of proteins. We were able to show also that some IdI and IdX of LBMP were closely related to the antigen-binding site.

Materials and Methods

Myeloma Proteins. The 13 LBMP used in the study are listed in Table I. The tumors producing these proteins were all of BALB/c origin. The proteins were initially typed with antiallotype antisera

Table I
Origin and Characteristics of Plasma Cell Tumors Producing Levan-Binding Myeloma Proteins

<table>
<thead>
<tr>
<th>Myeloma</th>
<th>Induction method*</th>
<th>Origin</th>
<th>Myeloma protein class</th>
<th>Binding to Levan†</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J606</td>
<td>M</td>
<td>Salk Inst.</td>
<td>IgG₄</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ABPC48</td>
<td>P + V</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ABPC47</td>
<td>P + V</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>UPC61</td>
<td>M</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>W3082</td>
<td>M</td>
<td>Salk Inst.</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MOPC702</td>
<td>M</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EPC109</td>
<td>M</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TEPC803</td>
<td>P</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ABPC51</td>
<td>P + V</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ABPC4</td>
<td>P + V</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>UPC10</td>
<td>M</td>
<td>NIH</td>
<td>IgG₄</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>AMPC1</td>
<td>M</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ABPC45</td>
<td>P + V</td>
<td>NIH</td>
<td>IgA</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

In the paper the myeloma proteins will be designated by the first letter followed by the number, e.g. ABPC48 = A48.

*Plasmacytoma (myeloma) was induced by i.p. injection of mineral oil (M), pristane (P) or Pristane and Abelson virus (V).

†Agglutination of palmitoyl levan, or palmitoyl inulin-coated SRBC.

§ This paper.

and 11 proteins ABPC48, ABPC47, UPC61, W3082, MOPC702, EPC109, TEPC803, ABPC51, ABPC4, AMPC1, and ABPC45 were of the IgA class and carried C₄ determinants A₄, one (UPC10) was an IgG₄ protein with C₄ determinants G₄, and one (J606) was an IgG₃ protein. ABPC48, ABPC47, UPC61, W3082, MOPC702, EPC109, and AMPC1 were precipitated from ascites or diluted serum at 4°C with 37-50% saturation with ammonium sulfate. The precipitate was resolubilized in phosphate-buffered saline and then dialyzed against physiologic saline. In addition, sera or ascites from 106 different BALB/c plasmacytomomas not binding levan were also tested for levan cross-specific idiotypic determinants. J606 and W3082 myeloma proteins were kindly supplied to us by Dr. M. Weigert, Institute for Cancer Research, Philadelphia, Pa.

Anti-Idiotype Antisera. For the most part to successfully prepare anti-idiotype antisera to BALB/c myeloma proteins, the strain to be immunized has to be of a different IgC₄ allotype than the BALBc and also possess the appropriate H-2-linked immune response (Ir) gene (22, 23). For these reasons strain A/He which lacked IgC₄A₄, the BALBc and possesses the appropriate Ir-1a gene which controls the maximal immune response to IgA myeloma protein was selected for immunization with ABPC4, ABPC47, ABPC48, UPC61, TEPC803, EPC109, AMPC1, and W3082 myeloma.
LEVIN-BINDING MYELOMA PROTEINS OF BALB/C MICE

proteins. Similarly B10.M mice which lacks IgC& G', 6. 7, e of BALB/c and possesses Ir-1b were
immunized with UPC10 and SJL mice were immunized with J606 myeloma proteins. No allotypic
markers have thus far been identified for IgG3 in mice. All mice were immunized according to the
method previously described (23). Antisera prepared with IgA myeloma proteins were made specific
for idiotype by the addition of 0.025 ml MOPC167 (3 mg/ml) to 0.1 ml of each antiserum to inhibit the
allotype. MOPC167 is a BALB/c IgA myeloma which shares the IgC& allotypes but not idiotype of the
IgA antilevan myeloma proteins. Similarly, B10.M anti-UPC10 antisera were made specific for the
idiotype by the addition of anti Pipes (IgG& myeloma protein; anti-J606 required no absorption.

Anti-Idiotype Antibody Assay. The hemagglutination (HA) and hemagglutination inhibition
(HI) methods previously described using chromic chloride treated SRBC coated with the specific
myeloma protein were employed (8). The anti-idiotype specific antisera were first absorbed with an
appropriate non-LBMP and the HA titer of the antiserum, for each of the LBMP-SRBC systems was
determined. Specific IdI HA systems were then developed by further absorbing the antiserum with an
appropriate cross reacting LBMP. Cross-specific HA systems were constructed by using an antiserum
prepared to one LBMP and SRBC-coupled with a cross-reacting LBMP. The HI method was used to
determine if a myeloma protein shared idiotypic specificities with the myeloma protein coupled to the
SRBC. The HI titer of a given inhibitor was compared with the HI titer of protein coupled to the
SRBC. Inhibitors giving comparable titers were judged to be identical, those giving much less but
significant inhibition were arbitrarily judged to be partial determinants. At this time the system is
not yet quantitative because we do not have a suitable immunoabsorbant and the distinction between
partial and identical is tentative. In most instances approximately 1 mg/ml of the specific myeloma
protein inhibitor was used. However, ascites were used as inhibitors for A51, M702, and J606 and the
greatest dilution giving complete inhibition was then determined.

Antilevan and Anti-Inulin Activity of Myeloma Proteins. Levan was isolated from culture
supernates of Aerobacter levanicum ATCC 15552 grown in nutrient broth at 23°C supplemented with
5-10% sucrose. The culture supernates were brought to 80% saturation with ethanol, which
precipitated the levan. The levan was solubilized in H2O and dialyzed extensively. Inulin was
obtained commercially from Nutritional Biochemicals Corp., Cleveland, Ohio. The palmitoyl
derivative of Aerobacter levanicum was prepared according to the method of Tsumita and Ohashi
(24); 10 mg of lyophilized levan was dissolved in 1 ml pyridine in a screw cap vial, heated in a water
bath, and 1 µl palmitoyl chloride added (Eastman Organic Chemicals, Rochester, N.Y.). The
palmitoyl chloride was added quickly to avoid precipitation in the pipette by pyridine. For different
polysaccharides, the amount of palmitoyl chloride can be varied to produce optimal derivatives. The
mixture was then stirred at room temperature for 48-72 hr, precipitated in 80% saturated isopropyl
alcohol, and centrifuged. The precipitate was dissolved in 1 ml water, dialyzed, and coupled to
saline-washed SRBC. Occasionally the palmitoyl-levan adhered to the glass vial, and when this
occurred the precipitate was dissolved in water. Varying amounts of palmitoyl-levan ranging from
0.05 to 0.2 ml were added to 1 ml 2.5% SRBC. The coupling procedure was carried out at 37°C for 1 hr.
The same procedure was used for inulin except that inulin is relatively insoluble in pyridine, 20 mg
inulin was added to 1 ml pyridine, heated, the supernate decanted, and to this 20 µl palmitoyl
chloride was added. The oligosaccharide β2-1 fructosan trisaccharide was prepared from Dahlia
Inulin by the method of Painter (25). The inulin hydrolysate was evaporated to a syrup that was
applied to 3-0 Whatman paper, and the oligosaccharides were separated chromatographically in a
butanol:pyridine:water (10:4:3) system for 100 h at room temperature. The oligosaccharides were
tentatively identified by their relative migration compared to fructose and sucrose. The trisaccharide
was eluted from the band that migrated just behind sucrose. The HI titer of fructosan trisaccharide
was determined for each IdI and IdX system. An 0.028 M solution of the trisaccharide was diluted in
the microtiter plates and to each dilution the myeloma protein-coated SRBC were added and allowed
to stand for 30 min at room temperature. Specific antiserum was then added and the HI titer was read
at 3 and 24 h.

Results

Antisera Prepared to One Levan-Binding Myeloma Protein Usually Cross-Reacts with Other Levan-Binding Myeloma Proteins. Idiotypic antisera pre-
pared to 9 (except J606) of the 10 levan-binding myeloma proteins agglutinated both SRBC coated with the immunizing myeloma protein and SRBC coated with other LBMP (Table II). Some of the antisera agglutinated SRBC coated with the other LBMP in roughly equal titers to the homologous protein, e.g., anti-W3082 and anti-E109 antisera.

In some instances much weaker HA titers were observed with the cross-reacting antibodies. This was particularly apparent when one compared the cross-reacting titers with the titer obtained with the homologous proteins. Anti-A48 antiserum is a good example; anti-A48 reacted to A48 protein, with a log 2 titer of 17; to A47 a titer of 14 and E109, U61, W3082, Aml, A4 myeloma proteins titers ranging from 9–12.

Table II

Hemagglutination Titers of Cross-Reacting Idiotypic Antibodies for Levan-Binding Myeloma Proteins

<table>
<thead>
<tr>
<th>Antisera</th>
<th>SRBC coated with myeloma proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>10559 A* anti-A48</td>
<td>12</td>
</tr>
<tr>
<td>10548 A anti-A47</td>
<td>0</td>
</tr>
<tr>
<td>10544 A anti-A4</td>
<td>17</td>
</tr>
<tr>
<td>10570 A anti-U61</td>
<td>16</td>
</tr>
<tr>
<td>10789 A anti-W3082</td>
<td>14</td>
</tr>
<tr>
<td>10898 A anti-E109</td>
<td>13</td>
</tr>
<tr>
<td>10878 A anti-Aml</td>
<td>10</td>
</tr>
<tr>
<td>10909 A anti-T803</td>
<td>10</td>
</tr>
<tr>
<td>9305 B10.M anti-U10</td>
<td>6</td>
</tr>
<tr>
<td>6470 SJL anti-J606</td>
<td>0</td>
</tr>
</tbody>
</table>

10559–10909 absorbed with M167 (IgA) to remove allotype specificities; 9305 absorbed with Adj.PC5 (IgG2a) to remove allotype specificities; 6470 prepared in SJL did not exhibit allotypic specificities.

* A = A/He strain obtained from Delta Uphoff, NIH.

Preparation of Idiotypic Antiserum Specific for Individual Specificities on Each Myeloma Protein. Each of the 10 antisera prepared to different LBMP could be made specific for the Id determinant by absorption with the appropriate cross-reacting myeloma protein (Table III). For example, absorption of anti-A48 antiserum with W3082 myeloma protein removed the cross-reactions with proteins A4, A47, U61, W3082, E109, Aml, and T803 while practically having no effect on the titer to A48 the homologous protein (Tables II, III). Even those antisera showing very strong cross-reactions could be made IdI-specific by absorption with a strong cross-reacting myeloma protein. This is demonstrated by the absorption of anti-U61 with W3082 protein which removed all the strong cross-reactions to A4, W3082, E109, Aml, and T803 and the weaker reaction to A48. In this instance however, the HA titer to U61 coated-SRBC was reduced from 19 to 14 (log 2) after absorption. This was also true of anti-W3082 and anti-
LEVAN-BINDING MYELOMA PROTEINS OF BALB/c MICE

Hemagglutination Titers of Individual Idiotype Antibodies for Levan-Binding Myeloma Proteins

<table>
<thead>
<tr>
<th>Absorbed</th>
<th>HA titers (log 2)</th>
<th>SRBC coated with myeloma proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>10559 Anti-A48</td>
<td>W3082</td>
<td>0</td>
</tr>
<tr>
<td>10548 Anti-A47</td>
<td>U61</td>
<td>0</td>
</tr>
<tr>
<td>10544 Anti-A4</td>
<td>U61</td>
<td>15</td>
</tr>
<tr>
<td>10570 Anti-U61</td>
<td>W3082</td>
<td>0</td>
</tr>
<tr>
<td>10789 Anti-W3082</td>
<td>U61</td>
<td>0</td>
</tr>
<tr>
<td>10888 Anti-E109</td>
<td>T803</td>
<td>0</td>
</tr>
<tr>
<td>10878 Anti-Am1</td>
<td>T803</td>
<td>0</td>
</tr>
<tr>
<td>10909 Anti-T803</td>
<td>E109</td>
<td>0</td>
</tr>
<tr>
<td>9305 Anti-U10</td>
<td>A4</td>
<td>0</td>
</tr>
<tr>
<td>6470 Anti-J606</td>
<td>None</td>
<td>0</td>
</tr>
</tbody>
</table>

10559-10909 absorbed with M167 (IgA) to remove allotypic specificities; 9305 absorbed with adj.PC5 (IgG2a) to remove allotypic specificities; 6470 prepared in SJL did not exhibit allotypic specificities.

E109 sera which showed a reduction of titer to the homologous protein after absorption. Anti-J606 antiserum did not require absorption and only identified an IdI on J606.

Identification of Idiotype IdX among LBMP. As indicated in Table II there were many cross-reactions of the idiotype sera with other LBMP. In these systems the determinants identified (IdX) were common to the immunizing protein and the “coated protein” but did not involve the IdI determinant. The many cross-reacting sera in Table II suggested common IdX determinants were prevalent among the LBMP. Thus, many of the antisera raised to different LBMP might be identifying the same determinants. This made it possible to construct a variety of HI systems (designated by the letters A to J) (Table IV) in which an antiserum was reacted with a myeloma protein not involved in the immunization. 12 different LBMP were used to inhibit each of the systems described in Table IV and instead of finding the same pattern of inhibition we found a variety of patterns of inhibition. This indicated that there were many cross-specific idiotypic determinants among the LBMP. Based on the pattern of inhibition using 10 IdX systems, 10 corresponding IdX determinants were identified, designated A to J (Table IV). As may be seen some of the inhibitions were judged to be only partial by the low titer of inhibition shown by the LBMP for a given IdX-HA system.

With three antisera, designated 10789, 10898, 10909, more than one IdX system was constructed. The anti-E109 antiserum 10898 identified two different cross-specific determinants D and G. These two specificities were distinguished by the A4 which inhibited G but not the D system and the strong inhibition of A51 in the D system and its relative inability to inhibit the G system. Two different IdX specificities E and F were identified by the anti-T803 antiserum.
<table>
<thead>
<tr>
<th>Antiserum</th>
<th>Immunizing myeloma protein</th>
<th>SRBC coated with:</th>
<th>IdX system</th>
<th>HI titer (log 2)</th>
<th>Myeloma proteins (1 mg/ml) or ascites inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U 10</td>
<td>A 48</td>
</tr>
<tr>
<td>10789</td>
<td>W3082</td>
<td>A4</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10789</td>
<td>W3082</td>
<td>T803</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10789</td>
<td>W3082</td>
<td>Am1</td>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10898</td>
<td>E109</td>
<td>Am1</td>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10909</td>
<td>T803</td>
<td>E109</td>
<td>E</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10909</td>
<td>T803</td>
<td>Am1</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10898</td>
<td>E109</td>
<td>Am1</td>
<td>G</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10898</td>
<td>E109</td>
<td>Am1</td>
<td>H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10559</td>
<td>A48</td>
<td>A47</td>
<td>I</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>10548</td>
<td>A48</td>
<td>A48</td>
<td>J</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

A51 and M702 preparations were ascites containing at least 1 mg/ml of myeloma protein.
No LBMP was inhibitory in an HI-IdX system that was not directly agglutinated in the corresponding HA system (Table II).

Most of the IdX systems were highly sensitive to inhibition and the myeloma protein inhibitors could inhibit completely at concentrations of 1 μg/ml or less. One system J was relatively insensitive.

Idiotypic Individual Determinants of Anti-Aerobacter and Anti-Inulin Antibodies. The HI system was used to determine if the IdI identified by specifically absorbed antisera described on Table III were shared by any of the 13 LBMP used in this study (Table V). For this purpose each of the specific anti-IdI antisera was reacted to the homologous protein-coated SRBC and then each of the 13 levan proteins were used as inhibitors of this system. No shared IdI was found and each of the 10 LBMP that were used to prepare antisera were shown to have idiotypic individual determinants designated IdI-1 through IdI-10.

Levan IdX and Levan IdI not on 106 Nonlevan-Binding Myeloma Proteins. 106 non-levan-binding myeloma proteins of various classes were tested for the levan IdI and IdX determinants described in this paper (Table VI). 68 IgA, 2 IgM, 11 IgG1, 9 IgG2a, 13 IgG2b, and 3 IgG3 myeloma proteins were included. Only one myeloma protein (IgA, ABPC28) was found to have a shared determinant (IdI-3) with a LBMP (A47). No other IdI or IdX determinants were found among the 106 non-levan-binding myeloma proteins.

Inhibition with β2−1Fruactosan Trisaccharide. We attempted to determine the relationship of the IdI and IdX determinants to the fructosan-binding site. To do this, cells coated with LBMP were equilibrated with varying concentrations of fructosan trisaccharide (the highest concentration was 0.028 M) and to these anti-idiotypic antibody was added (Tables VII and VIII). Six IdI systems were not inhibited by 0.028 M fructosan: IdI 2, 3, 7, 8, and 9 (Table VII) and IdX I and J and weakly B (Table VII). Inhibition by the highest concentrations of inhibitor was obtained with the IdI-6 and IdX-F systems. Inhibition with lower concentrations of hapten was observed with all of the other IdI and IdX systems indicating that the idiotypic determinants in question were close to if not actually part of the antigen-binding site.

The two IdI systems 2 and 7 (individual specificities of U10 and A48 proteins) and the IdX systems I and J (which identified cross specific determinants on A48 and on several inulin-binding proteins [see Table IV], were not inhibited by β2−1fructosan trisaccharide. A48 and U10 proteins do not bind β2−1fructosans and hence it would not be expected that they would be inhibited by the β2−1-linked trisaccharide.

Discussion

In this study we have examined V-region-associated antigenic determinants of 13 LBMP which comprise the largest related group of antigen-binding myeloma proteins thus far described. The LBMP in the BALB/c mouse were divided into two groups: the anti-inulins (11 proteins) and the nonanti-inulin (2 proteins) or the anti-A. levanicum levans. The first group is known to bind β2−1-linked fructosans (11) and the second group does not bind β2−1-linked fructosans but is
<table>
<thead>
<tr>
<th>Antiserum prepared to</th>
<th>Absorbant</th>
<th>SRBC coated with</th>
<th>Anti-Aerobacter</th>
<th>Anti-insulin and Aerobacter (myeloma proteins [1 mg/ml] or ascites inhibitors)</th>
<th>Id determinant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>U</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>U10</td>
<td>A4</td>
<td>U10</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A46</td>
<td>W3082</td>
<td>A48</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>A4</td>
<td>U61</td>
<td>A4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W3082</td>
<td>U61</td>
<td>W3082</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U61</td>
<td>W3082</td>
<td>U61</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E109</td>
<td>T803</td>
<td>E109</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T803</td>
<td>E109</td>
<td>T803</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A47</td>
<td>U61</td>
<td>A47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Am1</td>
<td>T803</td>
<td>Am1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J606</td>
<td>None</td>
<td>J606</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A51 and M702 preparations were ascites containing at least 1 mg/ml of myeloma protein.
hypothesized to bind fructosans with β_2-6 linkages. The latter specificity is as yet unproven.

The division of the levan-binding myelomas into two groups is further supported by a limited amount of structural data on partial amino acid sequences of the V_{κ} and V_{λ} subclasses of five of the proteins. In the mouse there are at least 25 subclasses of kappa and one of lambda based on the amino terminal sequence to Cys23 (16, 26, 27). V_{λ} sequences have recently been divided into four large groups and within each of these there is evidence to suggest still further subdivisions (28). Functionally related proteins with hapten-binding activities of α_1-3 dextran (14, 15) α_1-6 dextran (14), and β_6D galactan (17) all fall into the same V_{κ} and V_{λ} subclasses based upon partial amino terminal sequences through the Cys23 peptide for β_1-6D galactans and the first Wu-Kabat hypervariable region for the α_1-3 dextrans. The myeloma proteins W3082, J606 (27, 28), A4, and Aml (unpublished data of Vrana and Rudikoff) fall into the same V_{κ} and V_{λ} subclasses while the noninulin Aerobacter levan-binding proteins (28) W5476 (P. Barstad, personal communication), and U10 (S. Rudikoff, unpublished data) fall into different V_{κ} and V_{λ} subclasses. Thus, the antilevans are divided into two different hapten-binding groups comprising different V_{κ} and V_{λ} pairs that make up the binding sites.

A striking finding in the present experiments was the large number of different
idiotypic determinants among the 11 inulin-binding myeloma proteins Table IX. These proteins as mentioned are probably coded by V_L and V_H structural genes of the same subgroup. Each of the proteins thus far tested in this group was found to have its own specific IdI determinant and further each protein had two to nine cross-specific determinants. These multiple antigenic differences reflected by the presence of IdI determinants and dissimilarities in distribution of IdX determinants appear to be due to a structural variation in different and discontinuous portions of the V_{κ} and V_H polypeptide chains. Some changes are related to the antigen binding site region as demonstrated by the ability of the fructosan hapten to inhibit the interaction of anti-idiotype antibody from binding the idiotypic determinant, while others not inhibited by hapten were outside the sites. Structural studies on the antigen-binding sites of the MOPC603 (29) and New protein (30) have revealed that the binding site region is a continuous surface formed by five or six loops or bends of beta-pleated sheets. These particular segments of the V_L and V_H regions correspond to the Wu-Kabat hypervariable
region (31). Variations in different loops are probably responsible for the multiple antigenic differences which would account for the observation that many of the IdX determinants appear to vary independently of each other rather than coordinately. For example, IdX determinants A and D may occur in the same protein while in others only A or D are present and in still other proteins neither of the two determinants was seen.

The most intriguing aspect of the idiotypes of the LBMP aside from their multiplicity was the fact that most of them involved structures near the binding site without apparently disturbing the ability to bind the antigen. Regardless of what the biological mechanism of variation is, it apparently induces sequence changes close to but not directly involved in antigen binding. The structural variations responsible for the antigenic differences might be regarded as permissive changes not affecting the function of the molecules. It should be noted that this includes not only the binding of the hapten but also includes interactions of the myeloma proteins with the whole carrier polysaccharide.

The genetic basis for such diversity among functionally related proteins is not resolved. It could be due to a cluster of closely related structural genes that have duplicated and accumulated mutations but which have not yet diverged by losing their ability to form molecules that bind β2-1 linked fructosans. Alternatively, it could be argued the differences would have resulted from mutations that have developed in somatic cells in single V_kappa and V_H structural genes. The two mechanisms, multiple germ line genes and somatic mutations, are not mutually exclusive and it is possible that the multiplicity of idiotypes in the LBMP is due to a combination of both mechanisms.

It is of interest to note that the noninulin-binding protein A48 shared two IdX determinants with proteins in the inulin-binding group. These determinants were not inhibited by hapten. This similarity among proteins of different subclasses may be due to a structural relationship between V_kappa or V_H genes.
Possibly in the mouse one of the genes evolved from the other, by duplication. Alternatively, the antigenic similarity may simply be due to chance. Other possibilities are that A48 may be completely different from any of the other proteins by having different V_{κ} or V_{λ} subunits or may have evolved from an unusual pair of V_{κ} and V_{λ} units one of which is from the type involved in B2-1 fructosan-binding proteins while the other is in the B2-6 fructosan-binding group.

Three other relevant systems of antigen-binding myeloma proteins have been studied antigenically and structurally in the BALB/c mouse: the $\alpha 1\rightarrow 3$ dextrans (12, 13, 15), $\beta 1\rightarrow 6$ galactans (17), and the T15-S63 group of phosphorylcholine-binding proteins (7). In all three of these systems the specific binding function is governed by specific pairs of V_{κ} and V_{λ} genes. IdI and IdX determinants have been found in the $\alpha 1\rightarrow 3$ dextran system and we have found IdI (17) and IdX (unpublished observations) in the $\beta 1\rightarrow 6$ galactan system. The T15-S63 system has proven to be unusual, inasmuch as all proteins in this group have the same IdI determinant which also happens to be a genetic antigen (8). If a somatic mutational process were in fact responsible for the variations it would be expected that all V-region genes would be subject to change, which apparently is not the case with the T15-S63 phosphorylcholine-binding proteins. This result suggests that variations are determined at the germ line gene level and that multiplicity of idiotypes reflects multiple genes. Very recently however some evidence has been presented that there are a variety of normal phosphorylcholine-binding proteins in the mouse (32). The selection of a predominant type in both antibody and myeloma populations may be the result of factors that select these clones preferentially.

Summary

13 levan-binding myeloma proteins (LBMP) of BALB/c origin were classified into two groups with different binding specificities; one group of 11 proteins bound $\beta 2\rightarrow 1$ fructosans, a second group of two proteins bound fructosans probably of $\beta 2\rightarrow 6$ linkage. Anti-idiotypic sera prepared to 10 of the proteins in the appropriate strains of mice identified numerous idiotypic determinants. Each protein used for immunization had its own unique individual idiotypic specificities (IdI) and in addition most of the proteins carried two-nine cross-specific or shared idiotypes (IdX) that were found only among LBMP, and not found in 106 non-LBMP. Most of the IdX determinants and only four of the IdI determinants of the $\beta 2\rightarrow 1$ fructosan binding group were located in the antigen-binding site. The multiplicity of antigenic differences in this functionally related group of immunoglobulins reveals an unexpected degree of heterogeneity in V-regions that appears to be unrelated to binding.

Received for publication 17 March 1975.

Bibliography

