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The migration of leukocytes through intersti-
tial extracellular matrices has recently received 
considerable attention. Sophisticated in vitro as-
says using fi brous collagen matrices and three-
 dimensional investigation of leukocyte migration 
suggest a β1-integrin– and protease-independent 
mode of leukocyte movement within interstitial 
matrices (1). Although these studies are physio-
logically more relevant than studies of random 
migration on or through immobilized substrates, 
they do not refl ect the complexity of the in vivo 
situation nor are they relevant to the specialized 
migration processes required to cross basement 
membranes (BMs). The BM is the fi rst barrier 
encountered by emigrating leukocytes subse-
quent to penetration of the vascular endothe-
lial monolayer. Transmigration of this barrier 
remains diffi  cult to investigate in vitro and the 
most physiological studies use in vivo infl amma-
tory models (2, 3) or intravital approaches (4).

BMs are tight assemblies of specialized ex-
tracellular matrix molecules. Together with 
the endothelial cell monolayer, the BM pres-
ents a barrier to the movement of proteins and 
cells across the blood vessel wall. Our work 
has shown that blood vessel endothelium has 
a  specialized BM characterized by the presence 
of two laminin isoforms, laminins 8 and 10 (5). 
Studies by Karnovsky et al. were the fi rst to 
demonstrate that central nervous system (CNS) 
vessels are particularly impermeable to the 
movement of small molecules and elucidated 
the ultrastructural basis of this blood–brain bar-
rier (BBB) (6). Post-capillary venules in the 
CNS are ensheathed by a second BM known as 
the parenchymal BM, produced by the astro-
cytes and associated leptomeningeal cells (6), 
which is characterized by presence of laminins 
1 and 2 (5). A similar diff erential expression 
of cellular receptors for extracellular matrix 
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The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are 

ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated paren-

chymal BM, all of which contribute to establishment of the blood–brain barrier (BBB). As a 

consequence of this unique structure, leukocyte penetration of cerebral vessels is a multi-

step event. In mouse experimental autoimmune encephalomyelitis (EAE), a widely used 

central nervous system infl ammatory model, leukocytes fi rst penetrate the endothelial cell 

monolayer and underlying BM using integrin 𝛃1-mediated processes, but mechanisms used 

to penetrate the second barrier defi ned by the parenchymal BM and glia limitans remain 

uninvestigated. We show here that macrophage-derived gelatinase (matrix metalloproteinase 

[MMP]-2 and MMP-9) activity is crucial for leukocyte penetration of the parenchymal BM. 

Dystroglycan, a transmembrane receptor that anchors astrocyte endfeet to the parenchymal 

BM via high affi nity interactions with laminins 1 and 2, perlecan and agrin, is identifi ed as 

a specifi c substrate of MMP-2 and MMP-9. Ablation of both MMP-2 and MMP-9 in 

double knockout mice confers resistance to EAE by inhibiting dystroglycan cleavage and 

preventing leukocyte infi ltration. This is the fi rst description of selective in situ proteolytic 

damage of a BBB-specifi c molecule at sites of leukocyte infi ltration.
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 molecules at the endothelial and parenchymal borders also 
exists. In particular, dystroglycan is exclusively expressed on 
the astrocyte endfeet (5, 7, 8). Dystroglycan exists as an extra-
cellular α-subunit and a transmembrane β-subunit, which 
are products of the same gene and result from posttranslation 
processing of the molecule (9). The α-dystroglycan subunit 
is a receptor for several BM components of the parenchymal 
BM, including laminins 1 and 2, perlecan and agrin (10), as 
well as the extracellular neuronal component, neurexin (11), 
and is considered to anchor the astrocyte endfeet to the pa-
renchymal BM. Collectively, the endothelial cell layer, astro-
cyte endfeet, and their associated BMs constitute the cellular 
BBB and defects in any one of these components compro-
mises the barrier function of CNS vessels (11, 12).

Using a mouse model of experimental autoimmune 
 encephalomyelitis (EAE), we have shown that encephalito-
genic T cells interact with the endothelial BM laminins, but 
not with the parenchymal BM laminins, despite having the 
cellular receptors capable of mediating such interactions (5). 
In the course of EAE, leukocytes accumulate in the perivas-
cular space defi ned by the inner endothelial BM and the 
outer parenchymal BM, leading to focal leukocyte accumu-
lation known as perivascular cuff s. Clinical symptoms, how-
ever, only become apparent after leukocyte penetration of 
the parenchymal BM. These results indicate that the mecha-
nism of leukocyte transmigration of the inner endothelial 
cell BM diff ers from that used to penetrate the parenchymal 
BM and that the latter is a disease-relevant step. A delay in 
the onset of EAE symptoms has been observed in several 
mouse strains, some of which suggest a delay in the penetra-
tion of the outer parenchymal border. These include macro-
phage-depleted mice (13), TNF-α KO mice (14), and 
L-selectin KO mice (15). In the macrophage-depleted mice, 
leukocyte transendothelial cell migration is not impeded, but 
rather defi ciencies occur at the level of transmigration of the 
parenchymal BM and the glia limitans, supporting the con-
cept of a double barrier migration process (13). Passive trans-
fer of encephalitogenic T cells in macrophage-depleted mice 
results in T cell accumulation in the perivascular cuff , sug-
gesting that macrophages have a primary role associated with 
penetration of the parenchymal BM and infi ltration of the 
CNS parenchyma (13).

The initial transmigration of the endothelial monolayer 
requires expression of the adhesion molecule α4 integrin by 
leukocytes (3). Integrin α4β1 binds to vascular cell adhesion 
molecule-1 on the endothelial surface in infl amed vessels and 
induces matrix metalloproteinase-2 (MMP-2) expression in 
encephalitogenic T cells, which has been proposed to facili-
tate transmigration of the subendothelial matrix (16). MMPs 
are a family of Zn2+-dependent endopeptidases that degrade 
extracellular matrix proteins, but also CNS proteins such as 
myelin basic protein (17), NG2 proteoglycan (18), and cyto-
kines and chemokines (19–21). MMPs are expressed during 
embryonic development and in pathological situations where 
tissue remodeling occurs. They are synthesized in an inac-
tive proform that is activated extracellularly by proteolytic 

 cleavage under the regulation of several infl ammatory media-
tors, including cytokines and chemokines. MMPs have been 
extensively studied in multiple sclerosis and EAE, demon-
strating activity of MMP-14/MMP-2 (16) and MMP-9 (22), 
and possibly also of MMP-7 (23) and MMP-8 (24). How-
ever, whether and which MMPs aff ect infl ammatory cell 
 entry into the parenchyma of the CNS or demyelination 
 remains unclear. Although protease inhibitors reduce the se-
verity or delay the onset of EAE, to date no protease inhibi-
tor has been shown to completely ablate leukocyte migration 
into the perivascular space or into the brain parenchyma 
(25, 26). As a result of the hitherto lack of consideration of 
the cellular and BM barriers encountered by emigrating leu-
kocytes, it is also unclear whether the main targets of MMP 
activity are components of the endothelial cell layer or the 
parenchymal border.

The aim of this study is to defi ne sites of protease activity 
in the course of leukocyte infi ltration into the CNS in a 
mouse EAE model and to identify potential targets of en-
zyme activity. The study uses a combination of in situ zy-
mography and immunofl uorescence, permitting simultaneous 
identifi cation of sites of protease activity and endothelial and 
parenchymal BMs, as well as infi ltrating leukocytes. The gel-
atinases MMP-2 and MMP-9 were identifi ed as the major 
proteases active at sites of leukocyte infi ltration into the brain 
parenchyma, subjacent to the parenchymal BM. Macro-
phages were shown to be major sources of MMP-2 and 
MMP-9, and dystroglycan, which acts to anchor astrocyte 
endfeet to the parenchymal BM, was identifi ed as a novel 
target of this gelatinase activity. Genetic elimination of both 
MMP-2 and MMP-9 resulted in resistance to EAE and ab-
sence of both dystroglycan cleavage and leukocyte infi ltration 
into the CNS. The data reinforce the concept that leukocyte 
transmigration of the inner endothelial and outer parenchy-
mal BMs are separate events involving distinct molecular 
mechanisms, and demonstrate that selective gelatinase activ-
ity is essential for leukocyte penetration of the outer paren-
chymal barrier. This is the fi rst report of selective alteration of 
a molecule expressed at the BBB at sites of leukocyte pene-
tration and it introduces the possibility that control of gelati-
nase activity may restrict leukocyte infi ltration and thereby 
block onset of EAE symptoms.

RESULTS

In situ and gel zymography

To defi ne sites of protease activity, in situ zymography was 
performed on stage 2 and 4 EAE brain sections using either 
fl uorescein-conjugated gelatin or collagen type IV as sub-
strates. This was combined with immunofl uorescent staining 
with a pan-laminin antibody to identify the endothelial and 
parenchymal BMs, or with CD45 to localize sites of leuko-
cyte infi ltration (Fig. 1, A and B). Activity was detected when 
gelatin (Fig. 1, C–F) and not collagen type IV (Fig. 1 G) was 
used as substrate, indicating gelatinase and not collagenase 
activity. Gelatinase activity was focused at sites of leukocyte 
infi ltration into the brain parenchyma, subjacent to the 
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 parenchymal BM (Fig. 1, C–F), and was abolished by the 
general MMP inhibitor, 1,10-phenanthroline (Fig. 1 H).

As no antibodies exist that recognize active gelatinases 
(MMP-2 and MMP-9) in infl amed mouse tissues, gel zy-
mography was used to identify gelatinases present in EAE 
brains. Results revealed prominent bands at �70 and 100 kD 
in EAE but not noninfl amed brain extracts (Fig. 1 I). Com-
parisons with rMMP standards indicated that these bands rep-
resent the pro- and active forms of MMP-9 and MMP-2, 
respectively; suggesting that the gelatinase activity observed 
in in situ zymographies was MMP-2 and MMP-9. Weaker 
zymolytic bands of higher mol wt were apparent in EAE 
brain extracts (Fig. 1 I), indicating the presence of small 
amounts of neutrophil gelatinase B–associated lipocalin 
 complexes (27).

Gelatinase substrates

As in situ zymography identifi ed the parenchymal BM–
 astrocyte endfeet interface as the major site of MMP activity, 
investigation for MMP substrates was focused on this site. 
Immunofl uorescence staining patterns and/or Western blots 
of extracellular matrix molecules and their cellular receptors 
(Table I) were investigated in EAE brains (stages 2 and 4). 
No change in the distribution or Western blot patterns was 
noted for most of the molecules investigated with the excep-
tion of dystroglycan.

Immunofl uorescence staining of noninfl amed vessels for 
β-dystroglycan and pan-laminin showed the occurrence of 
β-dystroglycan on astrocyte endfeet adjacent to the paren-
chymal BM, but not on vascular endothelium (Fig. 2, A–C). 
This pattern is clearer in infl amed vessels where endothelial 
and parenchymal BM are separated by the perivascular cuff  
(Fig. 2, D and E). At sites of leukocyte infi ltration, β-dystrogly-
can staining was markedly reduced or absent (Fig. 2, E and G). 
We have previously shown the absence of discontinuities in 
the immunofl uorescent staining pattern for integrin β1 on 
the astrocyte endfeet in EAE (5), suggesting that astrocyte 
endfeet are present at sites of leukocyte infi ltration. This was 
confi rmed by double staining for β-dystroglycan and glial 
fi brillary acidic protein (GFAP), as an astrocyte marker, which 
revealed no diff erence between GFAP staining of infl amed 
vessels that lacked β-dystroglycan staining and those that 
retained β-dystroglycan staining and had no sign of leukocyte 
infi ltration (Fig. 2 F).

Dystroglycan binds to several parenchymal BM compo-
nents, including laminins 1 and 2, agrin and perlecan. Loss of 
laminin 2 (28) or perlecan (29) from BMs have been reported 
to lead to instability of the dystroglycan receptor complex 
and its loss from the cell membrane. Examination of diff erent 
stage EAE brains, triple or double immunofl uorescently 
stained for dystroglycan, CD45 and laminin 1 (Fig. 2, G–I), 
laminin 2 (not depicted), agrin (Fig. 2, J and K), or perlecan 
(Fig. 2 L) revealed no discontinuity in these parenchymal BM 
components. As the result of lack of a suitable antibody, 
neurexin (another major dystroglycan ligand) was investi-
gated only by Western blot analysis (see next paragraph). 

Figure 1. Gelatinase activity in EAE brains. Scheme of a post-

 capillary venule, showing cell layers and endothelial and parenchymal BMs 

separated by the perivascular space (A). EAE brain sections stained for 

pan-laminin and CD45 show leukocyte accumulation in the perivascular 

space and infi ltration into the brain parenchyma (B). In situ zymography 

coupled with pan-laminin (C–E) or CD45 (F) immunofl uorescence reveals 

protease activity in the CNS parenchyma subjacent to the parenchymal 

BM (arrows) at sites of leukocyte infi ltration, only when gelatin (C–F) and 

not collagen type IV (G) is used as substrate. 1,10-phenanthroline abol-

ishes gelatinase activity (H). (I) Gelatin gel zymography of healthy (C) and 

EAE brains shows proforms of MMP-9 and MMP-2 and the smaller active 

forms in EAE samples only. Higher mol wt bands are neutrophil gelatinase 

B–associated lipocalin (NGAL)–associated lipocalin complexes. rMMP-2 

and rMMP-9 are standards. C–E are the same specimen at different mag-

nifi cations; B, C–E, and F–H are serial sections. Data represent results 

from 10 mice. Bars, 40 μm.
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 Interestingly, double staining for perlecan core protein and 
pan-laminin revealed a consistently stronger staining for per-
lecan in endothelial BMs than in parenchymal BMs (Fig. 2 L). 
The absence of β-dystroglycan staining and the diff erential 
perlecan staining in endothelial versus parenchymal BMs was 
not the result of epitope masking, as both general unmasking 
techniques and treatment with heparatinase or hyaluronidase 
did not alter this pattern.

To investigate possible proteolytic cleavage not detect-
able by immunofl uorescence, Western blots were performed 
for agrin, laminins 1 and 2, and neurexin. Crude stage 4 EAE 
brain extracts revealed no indication of proteolytic cleavage 
of agrin, laminin 1, and neurexin (agrin shown in Fig. 2 M).

Western blot analysis of glycoprotein-enriched extracts 
from EAE and non-EAE brains revealed the intact β-dystro-
glycan molecule at 43 kD in all samples, and an additional 
30-kD cleavage fragment in EAE samples only (Fig. 3 A). 
β-dystroglycan is a transmembrane molecule that is covalently 
bound to an extracellular α-dystroglycan subunit. Western 
blot analysis of plasma membrane preparations from EAE brains 
demonstrated that the 30-kD β-dystroglycan fragment is 
 retained in the cell membrane of the astrocyte endfeet (Fig. 3 B).
No evidence of proteolytic cleavage of α-dystroglycan was 
apparent and only the intact molecule of 120 kD was de-
tected in EAE brains (Fig. 3 C); lower bands in Fig. 3 C are 
nonspecifi c cross-reactivity of the secondary antibody with μ 

chains of endogenous IgM (abundant in infl amed brains) as 
shown in the negative control (Fig. 3 D).

To test whether MMP-2 and/or MMP-9 were respon-
sible for cleavage of β-dystroglycan in the EAE brains, normal 
brain extracts were treated with activated rMMP-2 or rMMP-9. 
Fig. 4 A shows the presence of intact 43-kD β-dystroglycan 
and the 30-kD cleavage product in both MMP-2– and MMP-
9–treated samples, identical to those observed in EAE brains. 
As other MMPs have been implicated in EAE, the ability 
of activated rMMP-1, rMMP-7, rMMP-8, and rMMP-3 to 
cleave dystroglycan from non-EAE brains was tested. Fig. 4 B 
shows that none of these MMPs cleave dystroglycan to the 
30-kD fragment characteristic of EAE brain extracts.

Macrophages are major sources of gelatinases

Macrophages have been suggested as critical cell types in au-
toimmunity. Apart from their potential role as APC in EAE, 
macrophages have been suggested to have an additional role 
in the movement of T cells from the perivascular space into 
the brain parenchyma (13). When encephalitogenic T cells 
are adoptively transferred into macrophage-depleted mice, 
T cells accumulate in the perivascular space, but disease is not 
induced. As macrophages are also major producers of sev-
eral MMPs (30), we investigated whether macrophages can 
produce MMP-2 and MMP-9 and whether they contribute 
to the selective cleavage of dystroglycan at the parenchymal 

Table I. Primary antibodies to extracellular matrix molecules, their receptors, and cellular markers

Molecule Antibody name/clone Used in immunofl uorescence (IF), 

Western blot (WB), or FACS

Reference/source

Laminin α1 317 IF, WB (5)

Laminin α2 401 IF, WB (5)

Laminin α4 377 IF, WB (5)

Laminin α5 405 IF, WB (5)

Laminin γ1 3E10 IF (5)

Laminin β1 3A4 IF (5)

Pan-laminin 455 IF, WB (5)

Perlecan core C11L1, A7L6 IF, WB BD Biosciences

Brain-specifi c neurexin Clone 17 WB BD Biosciences

Collagen IV R94.4 IF (5)

Agrin 204 IF, WB (48)

β-dystroglycan VIMSA IF, WB (49)

β-dystroglycan NCL-43DAG WB Novo Castra

α-dystroglycan IIH6 WB Upstate

β1 integrin Ha2/5 IF BD Biosciences

α6 integrin GoH3 IF BD Biosciences

GFAP G-A-5 IF Sigma-Aldrich

CD45.2 30F11 IF, FACS BD Biosciences

CD11c N418 FACS BD Biosciences

DEC-205 NLDC-145 IF Serotec

TCRβ H57-587 IF, FACS BD Biosciences

CD11b, CD107b MAC1 (M1/70), MAC3 (M3/84) IF, FACS, FACS BD Biosciences, Serotec

GR-1 5C6 IF Serotec
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border. This involved EAE induction by myelin/oligoden-
drocyte glycoprotein (MOG) immunization in mice depleted 
of macrophages by treatment with clodronate-liposomes 
(13). Control mice were treated with PBS-liposomes or 
no liposomes.

EAE symptoms were apparent in mice treated with PBS-
containing liposomes or no liposomes by day 10 after immuni-
zation, whereas clodronate-liposome–treated mice remained 
resistant to EAE up to day 20 after MOG immunization (Fig. 
5 A). In EAE, CD45+ T cells and monocyte/macrophages 
infi ltrate the CNS and are recovered from perfused CNS 
tissues by discontinuous density gradient centrifugation and 
quantifi ed by FACS (31). This extravasated CD45+ popula-

tion was examined in PBS- and clodronate-liposome–treated 
mice for MAC3high/CD45high macrophages (31), MAC3high/
CD45low activated microglia (31), and TCRβ+ T cells (Table I). 
The total number of CD45+ cells recruited to the CNS in 
clodronate-treated mice at day 19 was 30% of that observed 
in PBS-treated mice at day 15 or in clodronate-treated mice 
at day 21 after MOG immunization. A signifi cantly lower 
proportion of these CD45+ cells represented macrophages in 
the CNS of clodronate-treated mice at day 19 (13% ± 0.34), as 
compared with clodronate-treated mice at day 21 (28% ± 2.1) 
or mice treated with PBS-liposomes (32% ± 6.4) (Fig. 5 B). 
Proportions of T cells recruited to the CNS and propor-
tions of activated microglia in the CNS were,  however, 

Figure 2. 𝛃-dystroglycan loss in infl amed vessels. Immunofl uores-

cence for β-dystroglycan and pan-laminin reveals continuous β-dystroglycan 

staining bordering the parenchymal BM in noninfl amed vessels (A–C) and 

loss of β-dystroglycan in infl amed vessels only (arrows in D and E). Triple 

staining for pan-laminin with β-dystroglycan and CD45 (G–I), or agrin 

and CD45 (J and K) reveals loss of β-dystroglycan at sites of leukocyte 

infi ltration (G and I), despite continuous pan-laminin (H) and agrin 

(J and K) staining. Double β-dystroglycan and GFAP staining 

indicates presence of astrocyte endfeet surrounding infl amed vessels 

(arrows in F). Perlecan staining of the parenchymal BM is continuous 

around perivascular cuffs, with higher intensity staining in endothelial 

BMs (L). Western blot reveals �200 kD agrin core protein and the charac-

teristic broad mol wt smear in stage 4 EAE and noninfl amed brains (Cont.) 

and purifi ed agrin (M). The table summarizes immunofl uorescence and 

Western blot data. Images are from different specimens and represent 

results from 10 mice. Bars, 40 μm.
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 unaff ected by clodronate treatment (Fig. 5 B). Previous 
 studies have shown a specifi c reduction of the macrophage 
population in LN and spleens of clodronate-treated mice at 
day 2 after clodronate injection (32), which was confi rmed 
here (unpublished data).

Immunofl uorescence revealed that MAC3+ macrophages 
were abundant in perivascular cuff s of PBS-liposome–treated 
mice, but were absent from clodronate-liposome–treated 
mice up to day 19 after MOG immunization (Fig. 5 B). 
 Reappearance of macrophages in the CNS parenchyma of 
clodronate-liposome–treated mice at day 21 coincided with 
infi ltration of CD45+ leukocytes and appearance of clinical 
symptoms (Fig. 5 B). Infi ltration of nonmacrophage, CD45+ 
cells was still apparent surrounding vessels in areas outside of 
the brain parenchyma; e.g., within the choroid plexus and in 
the leptomeningeal space, in the clodronate-liposome–treated 
mice (unpublished data). Immunofl uorescent staining identi-
fi ed these cells as T cells, DCs, and granulocytes, further 
 confi rming that development of the immune response was 
normal and that leukocyte recruitment to the CNS was not 
impaired, despite absence of infi ltration into the CNS paren-
chyma. Absence of a general defi ciency in T cell activation 
was also confi rmed by in vitro T cell proliferation studies 
performed on clodronate- and PBS-liposome–treated mice at 
day 15 and, in the case of clodronate-liposome–treated mice, 

at days 19 and 21 after MOG immunization. Antigen- specifi c 
(MOG 35–55) (Fig. 6 A) and anti-CD3–induced (Fig. 6 B) 
T cell proliferation showed no signifi cant diff erence between 
mice treated with clodronate- or PBS-liposomes. Hence, the 
data indicate that clodronate treatment specifi cally depletes 
macrophages and does not aff ect other leukocyte populations 
or microglia.

Gelatinase activity was not detectable in clodronate-lipo-
some–treated mice up to day 19 after MOG immunization 
by in situ (Fig. 7 A) or gel zymography (Fig. 7 B). Corre-
sponding immunofl uorescence showed continuous β-dystro-
glycan staining surrounding post-capillary venules (Fig. 7 A) 
and Western blots revealed only intact 43-kD dystroglycan 
(Fig. 7 C). By day 21, gelatinase activity was detectable by in 
situ zymography (Fig. 7 A) and gel zymography revealed the 
presence of pro- and active MMP-2 and MMP-9 (Fig. 7 B). 
In situ zymography localized the gelatinase activity around 
post-capillary venules at sites of leukocyte penetration of the 
parenchymal border (Fig. 7 A), where β-dystroglycan stain-
ing was signifi cantly reduced or absent (Fig. 7 A). Corre-
sponding Western blots revealed the presence of the 30-kD 

Figure 3. In vivo 𝛃-dystroglycan cleavage. Western blots for 

β- (A and B), α-dystroglycan (C), and secondary antibody control (D). 

A and C and WGA in B are glycoprotein-enriched CNS samples; Memb. 

is a CNS membrane fraction (B). All samples are run under reducing condi-

tions. Intact β-dystroglycan at 43 kD is detected in stage 2 and 4 EAE and 

in noninfl amed brains (Cont.) (A and B). An additional 30-kD β-dystroglycan 

fragment occurs only in EAE glycoprotein enriched and membrane frac-

tions (A and B). Intact α-dystroglycan is observed at �120 kD in all 

 samples (C). Lower bands in C are nonspecifi c cross-reactivity of the sec-

ondary antibody (D). The �80-kD band represents endogenous IgM μ 

chain, abundant in infl amed CNS, as shown in the negative control (D).

Figure 4. MMP-2 and MMP-9 cleave 𝛃-dystroglycan. Western 

blots for β-dystroglycan in glycoprotein-enriched samples from non-

infl amed brains (Cont.), stage 2 and 4 EAE brains, or Cont. samples treated 

with activated rMMP-2 or rMMP-9 result in the same 30-kD β-dystrogly-

can fragment as seen in EAE samples. Weak reaction of the secondary 

antibody with endogenous Ig as a result of serum infl ux into diseased 

brains is seen at �50 kD (A). Treatment of the same noninfl amed sample 

with activated rMMP-1, rMMP-7, rMMP-8, or MMP-3 does not cleave 

β-dystroglycan (B).
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β-dystroglycan fragment only in brain extracts of clodronate 
treated mice at day 21 after MOG immunization and of the 
PBS-liposome–treated mice (Fig. 7 C).

Macrophage-derived gelatinases cleave astrocyte 

𝛃-dystroglycan

The in vivo studies suggest that macrophages are the source of 
MMP-2 and MMP-9 in EAE brains, and that these gelatin-
ases may be responsible for the cleavage of astrocyte-derived 
β-dystroglycan. To test this possibility directly, peritoneal 
macrophages and astrocytes were isolated and cultured in 
 vitro. Conditioned medium from macrophage cultures were 
shown by gel zymography to contain pro- and active MMP-2
and MMP-9, whereas astrocyte cultures did not contain 
detectable gelatinase activity (Fig. 8 A). Western blots re-
vealed the identical 43-kD β-dystroglycan molecule on cul-

tured  astrocytes (Fig. 8 B) as observed in noninfl amed CNS 
extracts (Fig. 8 D), corresponding to the intact molecule. 
Coculture of macrophages and astrocytes or incubation of 
macrophage conditioned medium with astrocyte cultures 
resulted in the 30-kD β-dystroglycan fragment (Fig. 8 B). 
This cleavage was inhibited by MMP inhibitors (TIMP-1 and 
TIMP-4), but not by serine protease or cysteine protease 
 inhibitors (AEBSF, E64, or Aprotinin) (Fig. 8 C). Addition of 
macrophage-conditioned medium to glycoprotein-enriched, 
noninfl amed CNS extracts was also suffi  cient to result in the 
30-kD β-dystroglycan fragment (Fig. 8 D).

MMP-2/MMP-9 double DK (DKO) mice are resistant to EAE

To investigate the correlation between MMP-2/MMP-9 
 activity, dystroglycan cleavage, and EAE induction, MMP-2 
KO, MMP-9 KO, and MMP-2/MMP-9 DKO mice were 

Figure 5. Macrophage depletion delays EAE onset. (A) Clodronate-

liposome (Cl Lip) (■)–treated mice are resistant to EAE up to day 21 

after MOG immunization, whereas clinical symptoms appear by day 10 

in PBS-liposome (◆)–treated and untreated mice (●). (B) FACS of CNS 

infi ltrates reveals that CD45high/MAC3high macrophages represent 32% of 

the total CD45+ population at day 15 after immunization and reduction 

of this population to 13% in Cl Lip–treated mice at day 19. By day 21, the 

proportion of CD45high/MAC3high macrophages increases to 28% in Cl Lip–

treated mice, coincident with EAE onset. Proportions of activated CD45low/

MAC3high microglia do not vary between groups (7.5, 6.9, 7%). Immuno-

fl uorescence reveals MAC3 positive macrophages in CNS parenchyma of 

PBS-liposome–treated mice at day 15 after immunization that are absent 

in Cl Lip–treated mice until day 19, reappearing at day 21. Images are 

from different mice and represent results from six mice in each group.
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used. Adult MMP-9-defi cient mice have been previously 
shown to have no reduction in the onset or severity of EAE 
symptoms (22), which was confi rmed here (Fig. 9 A). In 
MMP-2 KO mice used here, both onset of EAE symptoms 
and disease severity did not diff er from +/− or WT litter-
mates (Fig. 9 A and not depicted). In both MMP-2 KO and 
MMP-9 KO mice, immunofl uorescence revealed the  occurrence 
of perivascular cuff s and the loss of dystroglycan immunofl uo-
rescence at sites of leukocyte infi ltration, whereas Western blots 
confi rmed β-dystroglycan cleavage (Fig. 9, B and C). Cellular 
infi ltrates were normal in both MMP-2 KO and MP-9 KO 
mice and consisted of macrophages, T cells, and DCs (Fig. 9 B). 
MMP-2/MMP-9 DKO mice showed no pro- or active 
forms of MMP-2 or MMP-9 in gel zymography (Fig. 9 A, 
inset). These DKO mice were resistant to EAE up to 40 d 
 after MOG immunization; no CD45+ T cell, macrophage, 
or DC infi ltration was detected by immunofl uorescence, 
whereas Western blots confi rmed the absence of dystroglycan 
cleavage (Fig. 9, B and C). Single or double MMP-2 and 
MMP-9 +/− mice developed disease symptoms at �day 10 
after immunization, similar to WT mice. Treatment of non-
EAE brain tissue with macrophage-conditioned media re-
sulted in cleavage of β-dystroglycan to the 30-kD product 
only when macrophages were derived from WT, MMP-2 
KO, or MMP-9 KO mice, and not from MMP-2/MMP-9 
DKO mice (Fig. 9 D).

D I S C U S S I O N 

Although MMPs have long been implicated in EAE (17), 
this is the fi rst time that the combined inactivation of the 
gelatinases, MMP-2 and MMP-9, has been shown to be cru-
cial for EAE resistance. Our data clearly show the presence of 
active gelatinases and not collagenases at sites of leukocyte 

infi ltration, subjacent to the parenchymal BM, and associated 
focal loss of β-dystroglycan immunofl uorescence. Western 
blot analysis revealed that the loss of β-dystroglycan staining 
was due to the result of its selective cleavage by both MMP-2 
and MMP-9, resulting in a residual 30-kD transmembrane 
fragment and loss of the entire extracellular domain. This 
is the fi rst identifi cation of an in vivo MMP-2/MMP-9-
specifi c substrate and the fi rst description of selective in situ 
proteolytic damage of a BBB-specifi c molecule at sites of 
leukocyte infi ltration.

Leukocyte infi ltration into the CNS is a multistep process 
involving initial penetration of the endothelial monolayer 
and underlying BM, followed by temporary residency in the 
perivascular cuff  bordered by the endothelial and parenchy-
mal BMs, and fi nally migration across the parenchymal BM 
and glia limitans into the brain parenchyma. Our novel use of 
in situ zymography coupled with immunofl uorescent stain-
ing for cellular and extracellular compartments of the in-
fl amed vessels has allowed precise localization of protease 
activity in EAE. The data demonstrate that gelatinase activity 

Figure 6. T cells proliferate normally in clodronate-liposome–

treated mice. Antigen-specifi c (MOG 35–55) (A) and anti-CD3–induced 

T cell proliferation (B) show no signifi cant difference between clodronate- 

(■ and black bars) or PBS-liposome (◆ and white bars)–treated mice at 

days 15 or 21 after MOG immunization. Data are means ± SEM from 

three experiments with n = 3. Figure 7. Macrophages are crucial for gelatinase activity and 

𝛃-dystroglycan cleavage. (A) Immunofl uorescence for CD45 and 

β-dystroglycan in CNS sections of clodronate-treated mice at days 19 

and 21 after MOG immunization and corresponding gelatin in situ zymo-

graphies (ZYM) coupled with staining for CD45 or pan-laminin reveal 

loss of β-dystroglycan staining and gelatinase activity at the parenchy-

mal border (arrows) only in brains of clodronate-liposome–treated mice 

at day 21. (B) Gelatin zymography reveals absence of MMP-2 and MMP-9 

in CNS samples from noninfl amed (Cont.) and clodronate-liposome–

treated mice at day 19 after immunization, but not in PBS-liposome–

treated mice or clodronate-treated mice at day 21. (C) Corresponding 

Western blots for β-dystroglycan reveal the 30-kD fragment in PBS-lipo-

some–treated mice and clodronate-liposome–treated mice at day 21 after 

immunization, but not at day 19. Images in A are either the same section 

or serial sections and represent results from eight mice in each group. 

Bars, 40 μm.
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fi rst becomes detectable in the perivascular space, which is 
the principal site of activity correlating with the sites of leu-
kocyte migration across the parenchymal BM, and not with 
transmigration of the endothelial cell monolayer and its BM.

Gel zymography revealed that MMP-2 and MMP-9 are 
the major proteases active in the infl amed vessels, consistent 
with previous studies (16, 33), and that macrophages are a 
major source of these gelatinases. Macrophage depletion fol-
lowed by active EAE induction revealed a tight correlation 
between the presence of macrophages and MMP-2 and 
MMP-9 activity and β-dystroglycan cleavage, whereas in 
 vitro studies demonstrated that macrophage-derived MMP-2 
and MMP-9 are suffi  cient for β-dystroglycan cleavage from 
the surface of astrocytes and are also capable of cleaving brain-
derived β-dystroglycan. This strongly suggests that one role 
of macrophages in EAE is to provide active MMP-2 and 
MMP-9, which cleave β-dystroglycan at sites of leukocyte 
penetration of the parenchymal border. It is noteworthy that, 

contrary to our expectations, leukocytes did not accumulate 
in the perivascular cuff  in macrophage-depleted mice, sug-
gesting that macrophages have an additional role before their 
entry into the perivascular cuff  that is independent of their 
proteolytic function. There is evidence that this additional 
role is likely to be antigen presentation (34). In the adoptive 
transfer model, a delay in T cell recruitment into the CNS 
occurs, which has been suggested to be the result of the time 
required for transferred T cells to be primed by recognition 
of CNS antigen in the periphery and then become compe-
tent to enter the brain parenchyma (35). Evidence exists for 
the involvement of both DCs and macrophages in this anti-
gen presentation (34, 36). Our data show that macrophages 
are normally abundant in the leptomeningeal space and in 
perivascular cuff s in EAE and that clodronate-liposome treat-
ment depletes these macrophage populations without aff ect-
ing other antigen-presenting cells, such as DCs or activated 
microglia. Clodronate-liposome treatment also did not aff ect 
T cells or PMN, which were found to accumulate in the lep-
tomeningeal space and in the choroid plexus, but did not 
 infi ltrate into the brain parenchyma, and T cell proliferation 
studies revealed that there was no major defect at the level of 
T cell activation. Our data, therefore, support an early role 
for macrophages in antigen presentation in EAE and suggest 
that this occurs before entry into the perivascular cuff , prob-
ably in the leptomeningeal space.

Despite strong gelatinase activity surrounding infl amed 
vessels, the observed selective cleavage of β-dystroglycan and 
the absence of signifi cant proteolytic changes in the major 
endothelial or parenchymal BM components (such as lami-
nins, collagen type IV, or agrin) argues against a general di-
gestion of extracellular matrix barriers in EAE. Neurexin, 
a high affi  nity ligand for dystroglycan that occurs between 
neurons and not on the astrocyte endfeet (11), was also not 
 aff ected, refl ecting the spatial restriction of the gelatinase 
activity. Our data suggest that gelatinases are essential for 
 selective cleavage events confi ned to the parenchymal BM–
astrocyte endfeet border, which may lead to local permeability 
changes. This is substantiated by the fact that only localized 
extravasation of serum proteins occurs around infl ammatory 
lesions and that this change in vessel permeability is a tempo-
rary event. β-dystroglycan is clearly one of the targets of 
this selective gelatinase activity. However, it cannot be ruled 
out that cleavage of BM components close to the amino- or 
carboxy-termini occurs, which may have profound impact 
on BM structure but are not detectable by the methods used 
here. The identifi cation of such in vivo substrates for gelatin-
ases remains diffi  cult as a result of the temporally and spatially 
restricted action of gelatinases and low levels of cleaved 
 fragments generated, but may become easier in the future 
with the development of novel mass spectrometry–based 
techniques (37).

The identifi cation of β-dystroglycan as a novel in vivo 
substrate for MMP-2 and MMP-9 in EAE is the fi rst report 
of a molecular alteration at the BBB associated with sites of 
leukocyte infi ltration. The only other CNS protein that has 

Figure 8. Macrophage-derived gelatinases cleave astrocyte and 

brain 𝛃-dystroglycan. (A) Gelatin zymography reveals pro- and active-

MMP-2 and MMP-9 in macrophage-conditioned media (Mϕ), but not in 

astrocyte lysates. (B) Western blots reveal intact β-dystroglycan in astro-

cyte lysates, which is cleaved to the 30-kD fragment by addition of 

 macrophage-conditioned media (Mϕ + astrocyte). (C) Cleavage of astrocyte-

derived β-dystroglycan by macrophage-conditioned media is inhibited by 

MMP inhibitors (TIMP-1, TIMP-4), but not serine and cysteine protease 

inhibitors (AEBSF, E-64, Aprotinin). (D) Incubation of crude CNS extracts 

from healthy mice with macrophage-conditioned media is suffi cient to 

cleave β-dystroglycan.
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been identifi ed as an in vivo substrate of MMP-9 is NG2 
proteoglycan, which accumulates in the CNS parenchyma as 
a result of demyelination insults, and retards maturation and 
diff erentiation of oligodendrocytes that are required for re-
myelination (18). Unlike dystroglycan, NG2 does not occur 
at the parenchymal BM-astrocyte endfeet border, but rather 
within the brain parenchyma surrounding oligodendrocytes. 
The dystroglycan complex links the parenchymal BM to the 
cytoskeleton of the astrocyte endfeet and disruptions to these 
interactions, by targeted elimination of dystroglycan (12) or 
changes in its glycosylation, cause severe neuronal defects 
(38). Interestingly, targeted elimination of dystroglycan in the 
CNS results in an infl ammatory gliosis (12), which is consis-
tent with a role for dystroglycan-mediated interactions as 
barriers to the movement of leukocytes, as suggested by the 
data here.

Cleavage of β-dystroglycan into a 30-kD fragment has 
been previously reported for both tumor and nontransformed 
cells (29, 39, 40) and can be mediated by MMPs, ADAMs, 
serine proteases, or a combination of these proteases, depend-
ing on tissue type (29, 39, 40). A cleavage site has been 
localized to the NH2-terminal extracellular portion of 
β-dystroglycan, resulting in the loss of the α-dystroglycan 
binding domain and retention of a 30-kD COOH-terminal 
fragment anchored within the cell membrane (29, 39). Data 
presented here suggest that the same occurs at the astrocyte 
endfeet. In other tissues, α- and β-dystroglycan have been 
shown to remain nonconvalently associated through the 
binding of the COOH terminus of α-dystroglycan to the 
NH2 terminus of β-dystroglycan even after cleavage (9, 29). 
In EAE brain, Western blots revealed the normal 120-kD 
α-dystroglycan subunit and no larger complexes, indicating that
the cleaved ectodomain of β-dystroglycan is not associated 
with α-dystroglycan and, therefore, probably results in the 
release of α-dystroglycan from the cell surface. As α-dystro-
glycan represents the binding portion of the receptor com-
plex and as astrocyte endfeet are still present at sites where 
dystroglycan is cleaved, this probably results in loss of anchor-
age sites to the parenchymal BM. Whether the released 
α-dystroglycan remains associated with the adjacent BM 
could not be determined as the result of the absence of appro-
priate antibodies. Its potential persistence in the parenchymal 
BM may convey additional signals to the infi ltrating leuko-
cytes or may alter the structural properties of the parenchymal 

Figure 9. Combined MMP-2 and MMP-9 activity are crucial for 

EAE. (A) EAE progresses normally in MMP-2 KO (★) and MMP-9 KO (●), 

whereas MMP-2 and MMP-9 DKO (■) mice are resistant to EAE up to 40 d 

after MOG immunization. The inset gel zymograph compares gelatinases 

in CNS extracts from EAE-induced WT, MMP-2 KO, MMP-9 KO, and DKO 

mice. (B) All sections were stained for pan-laminin (green) and either 

CD45, T cell receptor (TCRβ), macrophage/microglia (MAC3), DC (CD11c), 

or β-dystroglycan, revealing normal cellular infi ltrates and associated 

loss of β-dystroglycan in MMP-2 KO and MMP-9 KO mice (arrows), but 

not in DKO mice. Images are from different specimens and represent re-

sults from eight mice for each of the single KO mice and fi ve DKO mice. 

(C) Western blot confi rms the presence of the 30-kD β-dystroglycan frag-

ment in the CNS of WT, MMP-2 KO, and MMP-9 KO, but not DKO mice. 

(D) Incubation of brain extracts from healthy mice (non-EAE) with macro-

phage-conditioned media (Mϕ) from MMP-2 KO, MMP-9 KO, or WT litter-

mates, but not MMP-2/MMP-9 DKO, cleaves β-dystroglycan to the 30-kD 

fragment. Mϕ alone did not contain intact or cleaved β-dystroglycan. 

Bars, 40 μm.
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BM and thereby alter its stability and/or permeability. In the 
skin, such dystroglycan cleavage processes are physiological 
and probably represent a mechanism for basal keratinocyte 
detachment from the dermal-epidermal BM required for 
their diff erentiation (29). In contrast, astrocyte endfeet an-
chorage to the parenchymal BM is fi rm and long-term, and 
only in pathological cases such as infl ammation is this cleav-
age process induced. It is likely that this MMP-mediated 
cleavage of β-dystroglycan represents a means of honing cell–
matrix interactions required, for example, for cell movement 
or repair processes.

Data presented here indicate that MMP-2 and MMP-9 
have complementary roles in β-dystroglycan cleavage in 
EAE. Our EAE experiments in MMP-9 KO mice are consis-
tent with previous studies (22). However, the absence of 
 diff erences between MMP-2 KO mice and +/− or WT 
 littermates in the onset of EAE or disease severity contrasts 
with a recent study that reported increased susceptibility to 
EAE (41). A notable diff erence between the latter study and 
most other EAE studies is the unusually late onset of EAE 
symptoms in the WT mice (day 20) (41), whereas MMP-2 
KO mice show onset of symptoms at �day 10 as reported 
here for both MMP-2 KO mice and their WT littermates. 
We have confi rmed our fi ndings on the MMP-2 KO mice in 
WT mice in which MMP-2 activity was eliminated through 
the use of a specifi c MMP-2 inhibitor (42) (unpublished 
data). As susceptibility to EAE by MOG immunization is 
 infl uenced by genetic background, this is the most likely ex-
planation for the discrepancy in the data. The absence of 
β-dystroglycan cleavage in the DKO mice, together with the 
clinical changes, indicates that this cleavage is a signifi cant 
event in leukocyte infi ltration to the CNS parenchyma. 
However, whether this cleavage is the cause or an eff ect of 
clinical EAE induction cannot be determined from the data 
present here. Current studies aim at in vivo inhibition of 
β-dystroglycan cleavage via point mutation of the cleavage site
and subsequent EAE susceptibility studies to investigate this 
possibility. Furthermore, the data generated from the DKO 
mice suggest that loss of MMP-2 and MMP-9 has eff ects in-
dependent of dystroglycan cleavage and before endothelial 
cell transmigration because, as in the macrophage-depleted 
mice, leukocytes did not accumulate in the perivascular space. 
It has been suggested that MMP-9 and MMP-2 aff ect T cell 
activation in diff erent manners (43, 44). However, the ab-
sence of signifi cant changes in EAE onset or severity seen 
here in single KO mice and unpublished data from our labo-
ratory on DKO indicate that this is not a signifi cant issue in 
the EAE model used. The basis for the absence of a perivas-
cular infi ltrate in DKO mice is currently being examined.

In conclusion, our results confi rm that leukocytes use 
 diff erent mechanisms for penetration of the endothelial cell 
monolayer and BM and the parenchymal BM and glia limi-
tans, with gelatinase activity being required for the latter step. 
We have demonstrated that the activity of MMP-2 or MMP-9 
is essential for EAE induction and have identifi ed β-dystro-
glycan as a novel in vivo substrate for these gelatinases at the 

BBB. Collectively, the data suggest that gelatinase inhibition 
may protect against damage to the brain parenchyma by ar-
resting the leukocytes infi ltration.

MATERIALS AND METHODS
Animals
All mice were on a C57BL/6 background. MMP-2 KO mice (N11) were 

from the Institute of Physical and Chemical Research BRC, Japan (45), and 

MMP-9 KO mice (N9) were described previously (22). MMP-2 KO mice 

were bred with MMP-9 KO mice to generate DKO and heterozygous 

 littermate controls. Experiments were conducted according to Animal 

 Welfare guidelines.

MMPs and inhibitors
Inhibitors (Sigma-Aldrich) used were the following: 0.5M 4-(2-aminoethyl)

benzenesulfonly fl uoride hydrochloride (AEBSF), broad range serine prote-

ase inhibitor; 1 μM aprotinin, general serine protease inhibitor; 10 μM 

trans-epoxysuccinyl-l-leucylamido-(4-guanidino) butane (E-64), general 

cysteine protease inhibitor; and 0.5 mM 1,10-phenanthroline, general 

 metalloproteinase inhibitor. Tissue inhibitors of matrix metalloproteinase 

(TIMP), TIMP-1, and TIMP-4 (R&D Systems) were used as MMP inhibi-

tors that do not aff ect the activity of ADAMS or TACE. p-Aminophenyl-

mercuric acetate (APMA) (Sigma-Aldrich) was used to activate rMMP-1, 

rMMP-7, and rMMP-8 (R&D Systems).

Experimental protocols
EAE. EAE was induced using the 35–55 peptide of MOG (5). Neurological 

defects were scored as stages 1 (fl accid tail), 2 (hind limb weakness), 3 (severe 

hind limb weakness), 4 (hind quarter paralysis), and 5 (forelimb weakness). 

CNS samples were collected at diff erent stages and frozen in Tissue-Tek 

(Sakura Finetek) for immunofl uorescence and in situ zymography, or snap 

frozen for Western blot and gel zymography.

Macrophage depletion. Liposomes containing clodronate or PBS, a gift 

from Roche Diagnostics GmbH, were injected i.v. (200 μl/mouse) at days 

3, 7, and 9 after MOG immunization (13). Immunofl uorescence, T cell 

proliferation assays, and FACS analyses were performed at days 10, 15, 19, 

and 21 after immunization.

T cell proliferation assay. T cells were isolated from draining LN, placed 

in RPMI 1640/5% FCS, and β-mercaptoethanol together with splenic DCs 

(from a nonimmunized mouse) and MOG 35–55 (0–100 μg/ml) or anti-

CD3 (0–1 μg/ml), and incubated at 37°C for 3 d. Cell proliferation was 

 determined by [3H]thymidine incorporation.

FACS. Mice were perfused with PBS before spleens, LN, and brains were 

harvested. Spleens and LN were treated with 10 U type II collagenase 

(Roche) and 500 U DNase I (Sigma-Aldrich) and total cells were isolated by 

cell sieving (70 μm). Brain homogenates were separated into neuronal and 

leukocyte populations by discontinuous density gradient centrifugation us-

ing isotonic Percoll (GE Healthcare) (31). FACS was performed using a 

FACS Calibur (Becton Dickinson) with the antibodies indicated in Table I.

Macrophage and astrocyte cultures. Purifi ed astrocyte cultures were 

generated from cerebral cortices of newborn mice and test cultures stained 

with anti-GFAP (Table I) to ascertain purity.

Mice were injected i.p. with 4% Brewers thioglycollate (Sigma- Aldrich), 

macrophages were harvested by peritoneal lavage and cultured to confl uency 

in DMEM-F12/10% FCS.

Gel zymography. Crude CNS extracts were prepared by homogenization in 

ice-cold buff er (1 M NaH2PO4, 1 M sucrose, 0.5 M EDTA) with protease in-

hibitors (PI; Roche); samples were centrifuged and the solubilized fraction was 

collected. CNS extracts and conditioned media were prepurifi ed by incubation 

with gelatin sepharose (46). Samples were separated on 10% polyacrylamide 
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gels containing 1 mg/ml gelatin under nonreducing conditions. Gels were 

washed in TBS, 25% Triton X-100, followed by TBS, 5 mM CaCl2, 0.02% 

Brij 35 and incubated overnight in the same buff er. Gels were stained with 

Coomassie blue and destained in acetic acid: methanol: dH2O [10:50:40].

In situ zymography and immunofl uorescence. MMP activity was lo-

calized in brain sections using a modifi ed method of Oh et al. (47), which, 

in contrast with classical in situ zymography, does not require separation of 

the substrate from the underlying tissue section, permitting costaining of 

the section and precise cellular localization of MMP activity. 10 μg/ml 

DQ-gelatin or DQ-type IV collagen (EnzCheck; Invitrogen) in 50 mM 

Tris-HCl, pH 7.4, plus 1 mM CaCl2 was applied to CNS cryosections, in 

the presence or absence of 1,10-phenanthroline. Slides were incubated for 6 h 

in a humid chamber at 37°C, washed in PBS, and fi xed in −20°C methanol 

before immunofl uorescence staining (5). Digestion of the DQ-gelatin results 

in unquenching of fl uorochrome, which was detected with excitation at 

460–500 nm and emission at 512–542 nm.

Primary antibodies used in in situ zymography coupled with immuno-

fl uorescence or immunofl uorescence alone are listed in Table I. Bound anti-

bodies were visualized using FITC- or Texas red–conjugated goat anti–rat, 

and rhodamine- or Pacifi c blue–conjugated anti–rabbit secondary antibodies 

(Jackson ImmunoResearch Laboratories and Invitrogen).

Sections were examined using a Zeiss Axiophot microscope equipped 

with epifl uorescent optics and documented using a Hamamatsu ORCA1 

camera and Openlab software (Improvision).

Western blots: wheat germ agglutinin-glycoprotein extraction. 

Cell/tissue extracts were homogenized in TBS containing 1% Triton X-100 

and PI, and solubilized by rotation at 4°C. KCl-washed membrane fractions 

were prepared from solubilized CNS extracts. Glycoproteins were enriched 

using wheat germ agglutinin (WGA) beads (Vector Laboratories) and used 

in dystroglycan Western blots. In some cases, extracted glycoproteins from 

noninfl amed CNS or from astrocyte cultures were incubated overnight with 

rMMP-3-activated rMMP-2 or rMMP-9, or with APMA-activated rMMP-1, 

rMMP-7, or rMMP-8, before use in Western blots. Although rMMP-3 

and APMA are both capable of activating rMMP-2 and rMMP-9, MMP-3 

is more effi  cient and was therefore used. rMMP-2 and rMMP-9 activation 

with APMA results in the same pattern of results.

Samples were separated by SDS-PAGE on 3–12% gradient gels, trans-

ferred to PVDF membranes (GE Healthcare), and Western blots were per-

formed using the antibodies indicated in Table I.
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