Skip to main content

Main menu

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Special Collections
  • Reviews & Opinions
    • Editorials
    • Found in Translation
    • Insights
    • People & Ideas
    • Perspectives
    • Reviews
    • Viewpoints
  • Alerts
  • About
    • History
    • Editors & Staff
    • Journal Metrics
    • Policies & Permissions
    • Advertise
    • Contact Us
    • Privacy Policy
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA

User menu

  • Log in
  • Log out

Search

  • Advanced search
JEM
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA
  • Log in
  • Log out
JEM

Advanced Search

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Special Collections
  • Reviews & Opinions
    • Editorials
    • Found in Translation
    • Insights
    • People & Ideas
    • Perspectives
    • Reviews
    • Viewpoints
  • Alerts
  • About
    • History
    • Editors & Staff
    • Journal Metrics
    • Policies & Permissions
    • Advertise
    • Contact Us
    • Privacy Policy
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions

You are here

jem Home » 1993 Archive » 1 January » 177 (1): 155
Article

The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms.

K Takeda, G Dennert
K Takeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Dennert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1084/jem.177.1.155 | Published January 1, 1993
  • Article
  • Info
  • Metrics
  • Preview PDF
Loading

Abstract

F1 hybrid mice are able to acutely reject parental marrow grafts, a phenomenon that is due to natural killer type 1-positive (NK1+) cells. Circumstantial evidence had suggested that the antigenic determinants recognized by these cells are self-antigens, leading to the hypothesis that the physiological role of NK1+ cells is a downregulatory or suppressive function on bone marrow stem cell proliferation and lymphocyte function. In analyzing this hypothesis it is shown here that in young mice there is a temporal correlation between appearance of NK1+ cells in the spleen and the ability to reject allogeneic marrow or to suppress endogenous stem cell proliferation. The reverse situation exists in mice expressing the homozygous lpr gene. Whereas in young mice cells with NK1+ phenotype are demonstrable, these cells disappear with age, i.e., at the time autoimmunity develops. Concomitant with the disappearance of NK1+ cells, the ability to reject marrow grafts and to control endogenous stem cell proliferation also vanishes. The suggestion that the development of autoimmunity is causally related to the disappearance of NK1+ cells is supported by experiments in which NK1+ cells were either eliminated by antibody injection or increased by adoptively transferring cell populations enriched for NK1+ cells into lpr mice. It is shown that removal of cells enhances autoimmunity, whereas injection of NK1+ cells delays the onset of autoimmunity. In vitro assays are presented that demonstrate that suppression of autoantibody-secreting B cells is due to two NK1+ cell populations, one that expresses CD3 and causes specific suppression and one that lacks CD3 and causes nonspecific suppression.

© 1993 Rockefeller University Press
Previous articleNext article
Back to top
Download PDF
Citation Tools
The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms.
K Takeda, G Dennert
Journal of Experimental Medicine Jan 1993, 177 (1) 155-164; DOI: 10.1084/jem.177.1.155

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts
Sign In to Email Alerts with your Email Address

Email logo Twitter logo Facebook logo Mendeley logo Reddit logo CiteULike logo LinkedIn logo
The Journal of Experimental Medicine: 216 (12)

Current Issue

December 2, 2019
Volume 216, No. 12

  • Table of Contents
  • All Issues

Jump To

  • Article
  • Info
  • Metrics
  • Preview PDF
 

ARTICLES

  • Current Issue
  • Newest Articles
  • Archive
  • Alerts
  • RSS feeds

FOR AUTHORS

  • Submit a Manuscript
  • Instructions for Authors

ABOUT

  • About JEM
  • Editors & Staff
  • Policies & Permissions
  • Advertise
  • Contact Us
  • Feedback
  • Newsroom
  • Privacy Policy

CONNECT WITH JEM

  • Email
  • Facebook
  • Twitter
  • RSS
  • Instagram

Online ISSN: 1540-9538
Print ISSN: 0022-1007

Copyright © 2019 JEM by Rockefeller University Press