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Participation of C3b, the major cleavage product of C3, in both the classical 
and alternative pathways of complement activation is modulated by several 
control proteins (1-3). Two of these, C3b inactivator (C3bINA) ~ (4, 5) and flirt- 
globulin (B1H) (2), have been extensively purified and characterized. It is now 
apparent that C3bINA is a protease, and that it blocks the biologic activities of 
C3b by cleaving peptide bonds in this molecule (1, 4, 6). The second protein, 
B1H, potentiates the activity of C3bINA; indeed, recent evidence indicates an 
absolute requirement for/31H in the cleavage of fluid phase C3b by C3bINA (4). 
In addition, highly purified fllH by itself beth directly inhibits the activity of 
C3b (4) and accelerates the rate of decay of the alternative pathway convertases, 
C3bB and C3bBP (2, 7). 

Of great interest is the mechanism by which /31H exerts these effects. No 
proteolytic activity that can be directly ascribed to B1H has been found. Direct 
binding of/31H to C3b and subsequent steric interference with the interaction of 
C3b with factor B and/or C5 is the most straightforward explanation; two lines 
of evidence, fluid phase depletion and agglutination by antibody to /31H of 
EAC43 previously exposed to / ] IH (8), had indicated that such binding occurs. 
More recently, both this laboratory (9) and another (10) have presented further 
information about the binding of fllH to C3b-coated particles. The studies 
reported here give quantitative measurement of strength and valence of this 
binding, examine the influence of fluid phase C3 and C3b on it, and determine 
the effects that factor B (B) and properdin (P), which also bind to C3b, have on 
the binding of ~IH to C3b-coated cells. 

Mater ia l s  and  Methods  
Reagents. Bio-Rad Ag-I-X-10 (chloride form), Bio-Rex 70, electrophoresis grade polyacryl- 

amide, bis-acrylamide, and sodium dodecyl sulfate (SDS) were obtained from Bio-Rad Laborato- 
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l Abbreviations used in this paper: A, rabbit  antibody; B, factor B; ~IH, ~IH globulin; C3blNA, 
C3b inactivator; DGVB ÷÷, equal volumes of GVB +÷ and DSW++; D5W +~ , 5~ dextrose in water; E, 
sheep erythrocytes; FITC, fluorescein isothiocyanate; GVB ÷', 0.1~ gelatin veronal buffer~ P, 
properdin; SBTI, soybean trypsin inhibitor; SDS, sodium dodecyl sulfate; VBS, veronal-buffered 
saline. 

1792  J. ExP. MED. ((:) The Rockefeller University Press . 0022-1007/78/0601-179251.00 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/147/6/1792/1659517/1792.pdf by guest on 24 April 2024



DANIEL H. CONRAD, JAIME R. CARLO, AND SHAUN RUDDY 1793 

ties, Richmond, Calif. Radioiedide, both 13~I and carrier-free '25I, was obtained from Amersham 
Corp., Arl ington Heights, Ill. Trypsin and soybean trypsin inhibi ter  (SBTI) were obtained from 
Worthington Biochemical Corp., Freehold, N. J. Bovine serum albumin (Cohn Fraction V) was 
obtained from Calbiochem, San Diego, Calif. Las-R human  complement C3 reagent  kit  was 
purchased from Hyland Diagnostics Div., Travenol Laboratories, Costa Mesa, Calif., and 
Sepharose 4B from Pharmacia  Fine Chemicals, Inc., Piscataway, N. J. 

Buffers. Isotonic veronal-buffered saline (VBS) containing 0.00015 M Ca ++, 0.0005 M Mg ÷+, 
and 0.1% gelat in (GVB ÷÷) and 5% dextrose in water  containing the same concentrations of 
divalent  cations (D5W ÷÷) were mixed in equal volumes; the resul t ing buffer, ionic s t rength  of 
0.065 and pH 7.4, is referred to as DGVB *÷ and was used in all binding studies. GVB--  was made 
as described above except tha t  the divalent  cations were not present. A stock solution of 0.086 M 
EDTA, pH 7.5, was diluted in GVB to prepare 0.04 M EDTA GVB-- .  

Component Purification. Guinea pig C1 (11) and h u m a n  C2 (12) were prepared as published 
elsewhere. Part ial ly purified factor B was obtained by a modification of the procedure of G6tze 
and Mialler-Eberhard (13). Normal human  serum was adjusted to 40% Na~SO4 and the resul t ing 
precipitate was redissolved and subjected to chromatography on Bio-Rex 70 (13). Properdin was 
prepared by a modification in the procedure of Pensky et al. (14). The high salt  eluate from 
zymosan was dialyzed against  low ionic s t rength  buffer, and the resul t ing P-containing precipitate 
was redissolved in VBS and subjected to chromatography on a Sephadex G-200 column. B (15) and 
P (16) were measured hemolytically as described elsewhere. Highly purified human  C3 was 
prepared as described by Tack and Prahl  (17), and B1H was prepared as described by Whaley and 
Ruddy (2). C3b was prepared from the purified C3 with trypsin and SBTI as described by Bokisch 
et al. (18). 

Antisera. Antisera to C3, B, P, and 131H were induced in goats and were subsequently used in 
radial  immunodiffusion (19) to determine the concentration of the various components. Pooled 
h u m a n  serum, which had been previously calibrated against  purified C3, B, P, and t31H, served 
as the standard.  In radiolabeled preparations,  concentrat ions of C3 and ~IH were determined 
nephelometrically with a Hyland Laser Nephelometer  PDQ Ins t rument  (Hyland Diagnostics 
Div.) and a Hyland LAS-R h u m a n  complement C3 kit  for C3 determinat ions.  When fllH was 
measured nephelometrically,  doubling dilutions of pooled h u m a n  serum (1:12.5 to 1:400) were 
used as standards.  The 1:12.5 dilution was first filtered through a 0.4-pro Nucleopore filter 
(Nucleopore Corp., Pleasanton,  Calif.) before fur ther  diluting. Rabbit  ant i - f l lH was diluted with 
saline and subsequently an  equal volume of phosphate-buffered saline (0.01 M PO4 -, 0.15 M 
NaC1, pH 7.4) containing 4% polyethylene glycol was added to give a final antibody dilution of 
1:60.50 pl of s tandards  or appropriately diluted unknowns were added to 1 ml antibody dilutions 
and after 1 h at  room tempera ture  were examined for l ight scat ter  in the nephelometer;  50/~1 of 
the same samples added to 1 ml of saline served as b lank  controls. 

The purity of the '25I-labeled /31H (12'sI-f11H) (see below) was also est imated by test ing the 
abili ty of the preparat ion to be insolubilized with the monospecific goat ant i-f l i r t .  125I-~1H was 
mixed with an excess of goat anti-B1H, and after  30 rain at  37°C the /31H-antiq31H complexes 
were precipitated by adding a predetermined optimal amount  of rabbi t  anti-goat IgG (Atlantic 
Antibodies, Westbrook, Maine). After 1 h at  37°C and overnight  at  4°C, the complexes were 
washed three t imes with saline and the radioactivity remain ing  with the precipitate was 
measured. All f l lH preparat ions tested in this  manne r  were 80-87% precipitable by the anti-f l ir t .  

Immunofluorescent Staining. The globulin fraction of goat anti-/31H was conjugated with 
fluorescein isothiocyanate (FITC) according to the method of Herber t  et al. (20). The fluorescein 
to p ro te i ,  ratio (molar) of the final preparat ion was 2:1. Approximately 100 /~g of fl lH was 
covalently linked to Sepharose 4B (see below), and subsequently the specificity of the antiq31H 
was confirmed in blocking experiments whereby fluorescent s ta in ing of the Sepharose-beund fllH 
was inhibi ted by reacting the FITC-anti-/31H with highly purified fllH. 

The cells were examined for fluorescence by using a Zeiss photomicroscope II (Carl Zeiss, Inc., 
New York) with a HBO 200 light source, FITC excitation pr imary filter, and a 530-nm secondary 
filter. 

Radioiodination. Highly purified fl lH and C3 were radioiodinated with '25I (carrier free) or 
~3'I by the use of the chloramine T procedure (21). Unbound iodide was removed by ion exchange 
chromatography with Bio-Rad Ag l-X-10 (chloride form) and overnight  dialysis versus VBS. In 
the final preparat ions the radioiodide was 90-98% precipitable with 10% trichloroacetic acid. The 
specific activities obtained were in the range of 2-5 × 10 ~ cpm/p~g and 0.1-1.0 × 10 ~ cpm//~g for 
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B1H and C3, respectively. Bovine serum albumin (Cohn Fraction V) was added to the stock 
solutions of the radiolabeled proteins, and storage was at -70°C. The correspondences between 
'25I and 'a'I counts and numbers of molecules of B1H or C3 were calculated from the specific 
activities of the iodinated proteins, using Avogadro's number and mol wt of 185,000 and 150,000 
daltons (2) for C3 and/31H, respectively. 

Cellular Intermediates. Sheep erythrocytes (E) were sensitized with rabbit antibody (A), and 
EAC4 were prepared and stored at -70°C in a glycerol-containing medium as described elsewhere 
(22). EAC4 were thawed as needed. EAC14 and EAC14 °~' 2 were prepared by using guinea pig C1 
and human C2 which had been oxidized with I2 (23). EAC43 were prepared with nonoxidized C2 as 
described previously (15); the EAC43 did not lyse when exposed to a C3-9 source (rat serum 
diluted 1:15 in 0.04 M EDTA GVB ). EAC14°~'23 and EAC14°x'2 ':uI-C3 were prepared by 
incubating EAC14 ° ' '  2 in DGVB ++ with purified C3 (either unlabeled or '3'I-labeled) for 30 min at 
37°C followed by three washes with DGVB ++. 

Counting Technique. Measurements of "-'~I, t:"I, and 22Na were made in a dual channel gamma 
counter (model 1185, Searle Analytic, Chicago, Ill.). When all three isotopes were used simulta- 
neously, the samples were counted twice, first for '2'~I and 22Na and then for '3'I and 22Na. Channel 
settings were adjusted such that  0.1% or less spillover of the lower energy isotope (order of energy: 
'-'2Na > '3'I > '25I) into the higher one(s) occurred. The '2~I cpm was thus corrected for spillover of 
22Na and, when necessary, '3'I; +3'I cpm was corrected for 22Na spillover. Background corrections 
were also made for all channels. 

Radioactive Binding Assays. To avoid extensive manipulation of cells, 22Na was used as a 
volume marker for unbound t25I-/31H remaining with the cells. In a typical experiment, prepared 
cellular intermediates were incubated with '2~I-fHH for 15 min at 30°C in a vol of 1 ml. The cells 
were then sedimented by centrifugation and 0.1 ml of supernate removed. Approximately 90% of 
the remaining supernate was then removed by aspiration and the cells quantitatively transferred 
with DGVB ++ into a clean tube. Radioactive determinations were then made on the supernatant  
aliquot and the cell pellet. Based on the assumption that  the ratio of free '25I-BIH and 22Na in the 
incubation solution was constant, the amount of/31H bound to the cells was determined by the 
following formula: 

cpm '2'~I = /31H bound = A - (x/y)(z) 

where A is the total 'zsI cpm in the cell pellet, x is the 22Na cpm in the cell pellet, y is the Z~Na cpm 
in the supernate, and z is the 'zsI cpm in the supernate. This method of calculation is similar to 
that  described by Tsay and Schlamowitz (24). In situations where the 'a'I-C3 was used to 
quanti tate the amount of cell bound C3b, supernatant  corrections with Z2Na were unnecessary 
since there was essentially no '3'I-C3 in the fluid phase. 

In binding assays in which the objective was determination of binding parameters,  EAC 14 °~ 23 
or EAC14°x~2 '3q-C3 were incubated for 15 min at 30°C with various amounts (0.1-2 /~g) of '2~I- 
/31H in a total vol of 1 ml, and subsequently the bound 'zsI-/31H was determined as described 
above. The experimental data were then plotted according to the method of Scatchard (25). 

r/c = nK - rK 

where r represents the number of/31H molecules bound per cell (or alternatively per '~'I-C3b 
molecule), K is the average association constant, n the total number of binding sites per cell (or 
per C3b), and c is the concentration of free bindable '~5I-/31H. c was calculated as follows: 

c = (131HT)(MB)- B1Hh, 

where 131Hl~ is total B1H added (molecules/milliliter), MB is the maximal binding ability of the 
fllH preparation, and /31I-Ib is the number of molecules of 131H bound to the cell. In the final 
Scatchard plots, the best straight line for the experimental points was computed by the method of 
least squares using a Wang WCS-20 computer. K was obtained from the slope of this line and was 
converted to the more familiar liters per mole units by using Avogadro's number and a mol wt of 
150,000 daltons (2) for 131H. The maximal number of/31H binding sites (n) was obtained from the 
intercept of the line with the abscissa. This intercept represents an infinite free concentration of 
~IH. 

Other Analytical Procedures. Immunoelectrophoresis was performed by standard technique 
(26). SDS-gel electrophoresis with 7.5% separation gels was performed by the method of Laemmli 
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(27). Immunoadsorbents and /31H-Sepharose were prepared by linking the respective protein to 
Sepharose 4B by the cyanogen bromide procedure (28). 

Results  
Congruent Immunofluorescent Staining and Agglutination by Anti- 

[31H. Direct visual demonstration of both binding of ~IH to EAC14°x.'23 and 
agglutination of such cells by anti-B1H was obtained. For this experiment, 
EAC14°xY23 were prepared as described in Materials and Methods. One-half of 
the cell preparation (1.0 x 108 cells/ml) was then incubated for 15 min at 30°C 
with 12 t~g B1H in a vol of 0.6 ml, and the other half with DGVB ÷+ alone. After 
washing three times with DGVB ÷÷, the two cell populations were remixed and 
subsequently allowed to interact for 30 min at 25°C with fluoresceinated anti- 
/~IH. After washing in DGVB ÷÷, the cell mixture was mounted on glass slides 
and examined by both phase and fluorescent microscopy. There was gross 
aggregation of some, but not all, of the cells. When examined by fluorescence 
microscopy, only the cells that stained for fllH by immunofluorescence were 
agglutinated, thus indicating that the agglutination was associated with the 
presence of bound ~IH on the cells. 

Relation between fllH Binding and Amount of Surface-Bound C3b. Using 
'25I-B1H, the dependence of B1H binding on the presence of C3b was directly 
examined. Populations of cells bearing varying amounts of C3b on their surfaces 
were made by treating EAC14°x.~2 (5 x 107 per ml) with C3 concentrations 
ranging from 0 to 45.6 t~g/ml for 30 min at 37°C. The cells were washed three 
times with DGVB +÷, exposed to 0.9 tLg/ml of '25I-fllH for 15 min at 30°C, and 
then washed three more times with DGVB +÷. After transferring to clean tubes, 
the amount of '2~I-/31H bound was determined. EAC14°×Y23 generated with 
increasing amounts of C3 bound increasing amounts of 125I-fllH (Fig. 1). 
Approximately 29,000 molecules of ~25I-~1H were bound per cell at the highest 
input of C3; this represented 37% of the available 'uI-~lH. 

Maximum Binding Ability of '"-sI-fllH Preparations. The proportion of '~I- 
fllH in a given preparation which was capable of binding to C3b was examined 
in the following experiment using an excess of cells relative to the concentration 
of 12~I-~lH. Varying numbers of EA, EAC14, EAC14°x'~2, or EAC14°×Y23 were 
incubated with 0.1 t~g of '~I-B1H for 15 min at 30°C, and the amount of binding 
determined by the 22Na procedure described in Materials and Methods. This 
procedure was used to allow the detection of low affinity binding of the '25I-fllH 
by preventing any loss of bound '25I-fllH due to washing. Significant binding of 
the '25I-fllH occurred only with EAC14°~Y23 intermediate (Fig. 2). Even with 
maximal numbers of these cells, however, only 48% of the '25I-B1H was bound. 
In similar experiments with three other B1H preparations, maximal binding 
abilities ranged from 30 to 62%. Addition of fresh EAC14°×y23 to supernates 
containing '25I-fllH which had been previously exposed to EAC14°xy23 did not 
result in any additional binding of the '25I-fllH, indicating that the unbound 
material did not have the capacity to bind to cell-bound C3b. As indicated in 
Materials and Methods, 80-87% of the labeled/31H preparation was precipitated 
by monospecific goat anti-flirt. Kinetic experiments (data not shown) indicated 
that binding equilibrium was reached as early as 5 min at 30°C; thus, it is clear 
that some of the '25I-]31H was not bindable. Possible reasons for this are 
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FIG. 2. Percent of ~sI-fllH bound by varying numbers of EA {A), EACI4 IO), EACI4°X~2 
(B) or EAC14"xY23 (O). 

considered in the Discussion, but it should be noted here that in all of the 
quantitative analyses of ~2'~I-/31H binding, the maximum binding ability for the 
particular preparation was used in the calculations. 

Quantitative Analysis of fllH Binding. When a constant number of 
EAC14°x~23 (5 x 10 ~ cells) is incubated for 15 min at 30°C with increasing 
concentrations of 12~I-fllH, and fllH binding initially increases rapidly and then 
tends to level off as the binding sites become saturated. A plot of the raw data 
from an experiment of this type is shown in Fig. 3 a. Shown also is the same 
data corrected for the small amount of binding when EAC14°x-v2 was used 
instead of the EAC14°x-' 23. 

To estimate the binding constants of this reaction, the experimental data 
were subjected to the Scatchard analysis as described in Materials and Methods 
(Fig. 3b). Least squares analysis of the data gave an average association 
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FIG. 3. Quantitative analysis of the interaction of varying concentrations of ~sI-fllH with 
EAC14°xY23. In the upper panel the cpm I~sI-B1H bound is shown as a function of the 
amount of I~sI-B1H added; the lower panel is a Scatchard analysis of the same data (see 
text). In both, total binding to EAC14°xY23 (@) and binding corrected for EAC14°xy2 (A) are 
shown. In the lower panel the dashed straight line has been fit by the method of least 
squares to the corrected data, and the unbroken line is a smooth curve drawn by hand 
through the same points. 

constant (K) of 2.3 × 10 ~ L/M for this experiment; the range obtained in five 
similar experiments was 2-5 × 10 ~ L/M. Although the correlation coefficient for 
a straight line, obtained via the least squares analysis, was greater than 0.9 in 
all five experiments, the smoothest curve through the data points was always 
concave towards the abscissa (see Fig. 3 b) rather than straight. As is also 
evident from Fig. 3 b, the nonlinearity is not due to fllH binding to EAC14°x.v2, 
since correction for this binding does not greatly improve the straight line fit. 
Possible reasons for this deviation from linearity are given in the Discussion. 

Extrapolation of the experimental data points in Fig. 3b to the abscissa 
indicates a maximum of 60-70,000 I~I-/~IH molecules bound per cell. In the 
Scatchard analysis shown in Fig. 4, EAC14°xY2 131I-C3 were used to determine 
the number of fllH molecules bound per C3b molecule. Except for the 13~I-C3, 
the experimental conditions were identical to those used for Fig. 3. In Fig. 4, 
therefore, r represents the number of/31H molecules bound per C3b molecule. A 
K value of 3.9 × 10 s L/M was obtained from the slope of the line, and 
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extrapolation to the abscissa indicates a value for r of 0.5, equivalent to an 
average of one molecule of B1H per two bound C3b molecules. The range for r in 
the three experiments done in this manner was 0.5 to 0.8 B1H per C3b; in no 
experiment was a 1 to 1 relationship achieved. 

Influence of Fluid Phase C3 and C3b on the Binding of fllH to Cell Bound 
C3b. Evidence that  interaction between C3b and ~IH occurs in the fluid phase 
is provided by the data in Table I. For this experiment, tubes containing a 
constant amount (0.1 gg) of I~I-B1H and increasing concentrations of either 
native C3 or C3b (prepared as described in Materials and Methods) or unlabeled 
~IH were incubated for 15 min at 30°C with 5 × 106 EAC43 in a total vol of 1 ml. 
The amount of I=I-B1H bound was determined by the 22Na procedure. Table I 
compares the concentration of unlabeled B1H required for 50% inhibition of 125I'- 
fllH binding with the amounts of C3 and C3b required for similar inhibition. At 
relatively high concentrations (approximately 1,000-fold molar excess over 
]31H), both native C3 and C3b inhibit binding of lZSI-fllH to C3b-bearing cells. 
Contamination of the C3 or C3b preparations with small amounts of B1H does 
not explain the results shown in Table I, since absorption with anti-fllH 
conjugated to Sepharose 4B has no effect on their inhibitory capacity. Similarly, 
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FIG. 4. Scatchard analysis of binding of l~sI-fllH to EAC14°xY23 prepared with "I-C3.  The 
latter allowed the enumeration of the numbers of C3b molecules which was 64,000/cell for 
this experiment. As in Fig. 4, total binding (O) and that  corrected for EAC14°x~ (A) 
binding are given. The dashed and smooth lines are also the same as in Fig. 3. 

TABLE I 
Inhibition of r"sI-BIH Binding to EAC43 by fllH, C3b, or C3 

Relative molar in- 
Inhibitor 50% inhibitory con- hibitory concentra- 

centration 
tion (50%)* 

ng/ml 
B1H 125 1 
C3b 141,250 942 
C3 178,000 1,142 

* Refers to the molar excess over fllH required for 50% inhibition. 
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contamination of the native C3 with C3b does not explain their approximately 
equivalent inhibitory capacity. No alteration in the electrophoretic mobility of 
the native C3 was seen by immunoelectrophoresis, and a single sharp band 
corresponding to the C3 a-chain was found when the preparation was examined 
by SDS-gel electrophoresis under reducing conditions. 

Influence of  Factor B on the Binding of  ;31H to Cell Bound C3b. As was the 
case for C3 and C3b, fluid phase B also inhibited the equilibrium binding of 
fllH to C3b-coated cells (Fig. 5). For this experiment, 0.1 ~g of 125I-f11H was 
mixed with increasing concentrations of either B, or for comparison, unlabeled 
fllH. EAC14°×.'23 (5. × 106 cells) were then added and after 15 rain at 30°C, the 
amount of ~25I-f11H bound was determined by the 22Na procedure. As seen in 
Fig. 5, B c a u s e d  a dose-dependent inhibition of '25I-fllH binding to the cells; on 
a molar basis 280-fold more B than unlabeled fllH was required for 50% 
inhibition of '2~I-BIH binding. 

f l lH has been previously shown to enhance the decay of factor B from 
EAC43B cells (2, 7). The experimental data shown in Fig. 6 demonstrated that 
the converse is also true in that  B can cause enhanced release of fllH from 
EAC43. fllH 2 cells. For this experiment increasing concentrations of B were 
incubated for 15 min at 30°C with 5 × 107 EAC43. ~IH bearing 4,100 molecules/ 
cell of '25I-f11H. Subsequently, the cells were washed three times with DGVB ÷+ 
and the amount of '2~I-fllH remaining bound to the cells was determined. In the 
absence of B, 12% of the bound fllH was released; over and above this value, the 
percentage of bound 125I-~1H released was directly proportional to the concen- 
tration of B added. 

Influence of  Properdin on BIH Binding to Cell Bound C3b. In view of 
the stabilizing effect that  properdin has on the interaction between B and C3b 
(16), it was of interest to examine its influence on BIH binding. EAC43 cells 
(5 × 10 ~) were incubated for 15 min at 30°C with various amounts of P and 0.1 
~g of 12~I-f11H. As can be seen from the results shown in Table II, P caused a 
dose-dependent enhancement of binding of ~25I-f11H to EAC43 cells. When an 
amount of B sufficient to inhibit approximately 50% of the ~25I-f11H binding was 
added, the enhancing effect of P was lost. 

In a separate experiment, a Scatchard analysis of '25I-BIH binding to EAC43 
cells in the presence and absence of a constant amount of P was performed. Two 
parallel curves were found, indicating that P did not change the affinity of BIH 
binding, but rather made more C3b sites accessible to the fllH. 

Discuss ion  
The purpose of the present work was to delineate clearly the C3b binding 

activity of ~IH globulin and to investigate the influence that  other proteins 
which bind to C3b have on the interaction of fllH with cell-bound C3b. Previous 
work had demonstrated agglutinability of EAC43 cells which had been incu- 
bated with fllH (8). The fluoresceinated ant i -~lH used herein clearly demon- 
strates that  this agglutination was due to bound fllH. Evidence that  the fllH is 
binding to the C3b and not to the cell surface or other complement components 
is seen in the direct relation between the binding of '2~I-~IH, and the amount of 

We propose this  symbol, EAC43. fllH to indicate an intermediate  bearing bound fllH. 
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FIG. 5. 
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FIG. 6. Removal of'2sI-fllH from EAC43-BIH by varying concentrations of B. Values for 
triplicate determinations are shown. 

C3 used to generate the EAC14°×~23 (Fig. 1). In addition very little '25I-B1H 
binds to the cellular intermediates EA, EAC14, or EAC14°x."2 (Fig. 2). 

In the majority of the binding experiments which used '25I-~1H, 22Na was 
used to correct for fluid phase (unbound) fllH. This procedure eliminates the 
necessity of washing and in addition allows the observation of weak binding 
interactions (24). However, the binding affinity of fl lH turned out to be quite 
high; thus little difference was seen in experiments where three washes were 
used in place of the Z2Na procedure (data not shown). 

The observation that not all of the 125I-B1H was capable of binding to cell 
bound C3b, even when the C3b was in obvious excess (Fig. 2), was surprising. 
The most likely reason is simply that the C3b binding site on the ;81H is 
somewhat labile, and while antigenically it can be recognized as B1H, the C3b 
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TABLE II 

Enhancement of ~sI-fllH Binding to EAC43 by Properdin and 
Its Reversal by Factor B 

Molecules ~:~I-131H Percent of control 
Agent (~g added) bound per cell 

Buffer 7,643 100 
P (0.01} 8,053 105.4 
P (0.05) 8,537 111.7 
P (0.25} 9,568 125.2 
P (0.25) + B (40) 3,715 48.6 
B (40) 4,069 53.2 

1801 

binding ability is lost. It does not seem likely that the loss of binding ability is 
related to the radioiodination procedure; this level of labeling (2-8 × 10 ~ cpm 
l~sI/~g fllH) represents an average less than 0.5 atoms of 1~I per fllH molecule 
which is a relatively low level of labeling. Also, competition experiments (Fig. 
5 and Table I) indicated that unlabeled fllH was as effective as labeled 
preparations in binding to C3b. One other possibility to explain the decreased 
maximum binding would be release of C3b from the cells, and inhibition of 131H 
binding by the fluid phase C3b such as seen in Table I. However, this would be 
a viable possibility only if this released C3b was much more effective in 
inhibition than the trypsin-produced C3b used in Table I. 

As discussed by DeMeyts et al. (29), determination of the maximal binding 
ability of the binding ligand in question is important with respect to further 
analysis of the binding data. If this is not done, the experimentally determined 
binding constants will be low (29). For this reason, in the calculation of the free 
fllH concentrations the total fllH added was adjusted to correspond to this 
experimentally determined maximal binding value. 

The method of Scatchard (25) was chosen to analyze the ~IH binding data. 
This approach has been used in many protein-ligand binding studies and, more 
recently, in cell receptor-protein binding situations (30, 31). The slope of the 
line is equal to - K  and the intercept at the abscissa is maximum number of 
binding sites. As stated in Results, the best line through the data points (see 
Figs. 3a and 4) is concave towards the origin. There are three generally 
accepted reasons for deviation from linearity in this situation (29): (a) The 
binding site itself is structurally heterogeneous, as are the combining sites of 
various antibodies directed against the same antigen; the different sites might 
have different affinities. (b) Two or more entirely different classes of binding 
sites are present, each with different affinity for the ligand. This is frequently 
observed in experiments in which the amount of nonspecific binding is large. (c) 
Cooperativity between sites may result in changing affinity as sites become 
occupied. A concave plot is consistent with negative cooperativity (29), in which 
unfilled sites have a lower affinity for the ligand as increasing numbers of sites 
become filled. 

For the interaction between fllH and C3b, site heterogeneity appears un- 
likely, since both proteins are supposed to be homogeneous. However, poly- 
morphic forms of C3 are known to exist (32), and/~IH has been shown to exhibit 
some microheterogeneity when subjected to isoelectric focusing (33); thus it is 
not possible to exclude site heterogeneity as the reason for the nonlinearity of 
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the Scatchard plots in the present study. The second reason, independent 
classes of binding sites, has been effectively ruled out, since the second class of 
sites would be those present on EAC14 T M  2, and subtraction of the small amount 
of binding to this intermediate still does not linearize the plots. The final 
reason, negative cooperativity, appears the most likely: C3b is known to be 
deposited on the cell surface in a nonrandom manner (34); as the B1H binding 
sites on the C3b become occupied, the remaining C3b molecules, due to steric 
reasons, may be less accessible to additional/31H. 

The maximum number of binding sites, n, may be underestimated when a 
concave Scatchard plot such as observed for the interaction of C3b and/31H is 
extrapolated in a linear fashion. Thus it is possible that the ratio of fllH to C3b 
might approach 1:1 if sufficiently high fllH concentrations were examined. 

The functional consequences of the interaction between C3b and/31H in the 
fluid phase have been demonstrated by Fearon and Austen (35). Only a small 
amount of turnover of C3 and factor B was observed in mixtures of C3, B, I), 
C3bINA, and/31H at concentrations similar to those found in serum. However, 
if fllH was left out of the reaction mixture both C3 and B were rapidly converted 
to hemolytically inactive components. Pangburn et al. (4), suggested that ~IH 
was absolutely essential for C3bINA activity on C3b in fluid phase reactions. 
The inhibitory activity of native C3 and C3b on/31H binding seen in Table I is 
further evidence of the fluid phase interaction of fllH with C3 and C3b. In spite 
of the above, direct demonstration of complex formation between C3b and/31H 
in the fluid phase has not yet been achieved. 

When examined for their effect of fllH binding to cell bound C3b, the two 
other C3b binding proteins, B and P, have essentially opposite effects. B both 
displaces bound/31H (Fig. 6) from the cell and inhibits the equilibrium binding 
of B1H to C3b (Fig. 5). This suggests that factor B and B1H interact with the 
same or closely adjacent sites on the C3b molecule. Others have attributed the 
ability of substances to activate the alternative pathway to their furnishing a 
protective "microenvironment," in which C3b bound to their surfaces is less 
accessible to inhibition by/31H (10, 35, 36). Since the interaction of B with C3b 
on these same surfaces is supposedly undiminished, these data suggest that B 
and fllH interact with different sites on C3b. There is no obvious explanation 
for this apparent paradox. 

In the absence of B, P appears to increase the availability of C3b sites for/31H 
binding. It is evident from the work of Fearon and Austen (16) that P increases 
the hemolytic activity of factor B. This increase has been attributed to 
stabilization of the alternative pathway convertase (16), but properdin may 
cause increased equilibrium binding of B as well. The ability of properdin to 
extend the half-life of bound fllH is currently being investigated. 

Summary 

Purified B1H globulin (f~lH) was shown to bind to C3b coated cells by both 
immunofluorescent and radioactive tracer techniques. With EAC43, the amount 
of fllH bound was directly proportional to the amount of C3 used to prepare the 
cells; EA, EAC14 and EAC14°×.'2 bound very small amounts of B1H. The C3b 
binding site on B1H was labile in that not all of the purified '25I-/31H was 
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capable of binding to C3b, even when an excess of cell-bound C3b was present. 
Scatchard analysis of binding of fllH to C3b-coated cells indicated an equilib- 
rium constant of 109 L/M. Deviations from linearity were regularly found on 
Scatchard analyses. This was consistent with the hypothesis that  the ~IH 
binding sites exhibit negative cooperativity in that  as more sites become 
occupied, it becomes more difficult to fill the remaining sites. The stoichiometry 
of the reaction between C3b and fllH was examined using EAC14°×~23 prepared 
with '3'I-C3 and fllH labeled with '25I. Between 0.5-0.8 ~IH molecules were 
bound per C3b molecule. 

Other alternative pathway components influenced the binding of I~I-~IH to 
cell bound C3b. Both C3b and native C3 inhibited binding of labeled ]~IH at an 
efficiency approximately 1/1,000 that  of unlabeled fllH. Factor B inhibited 
binding with 1/280 the efficiency of unlabeled fllH. Properdin caused a dose- 
dependent increase in the binding of ~IH; this enhancement was abrogated if B 
was also present in the reaction mixture. Scatchard analysis indicated that  the 
enhancement of fl lH binding by P resulted in an increased number of available 
binding sites rather than an increase in the affinity of binding. 

The authors would like to express their  appreciation to Mr. Don Purkall for excellent technical 
assistance and to Mr. Peter Evans for assistance with the nephelometry. 
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