The initial interaction between bacteria and the renal pelvic epithelium may determine whether intrarenal infection occurs. A model of retrograde pyelonephritis was employed to study these events by electron microscopy. Female rats received an intravesicular inoculation of a 0.5-ml suspension of Proteus mirabilis containing 108 organisms. At intervals after inoculation, the kidneys were fixed by intravascular perfusion and the tissues were prepared for electron microscopy.

During the first 24 h, increasing numbers of bacteria were seen to be attached by pili to the renal pelvic epithelial cells. The organism appeared to cross the mucosal barrier by several mechanisms: (a) penetration into the cytoplasm of intact epithelial cells, (b) passage between epithelial cells that were separated by excessive hydrostatic pressure generated during bladder inoculation, (c) passage across necrotic regions of the pelvis, and (d) translocation to the cortex by calicotubular backflow.

Whereas at inoculation bacteria possessed pili 40 Å in diameter (type III pili) 24 h after reflux, the predominant type of pili measured 70 A in thickness (type IV pili). Repetitive subculture induced a similar transition in vitro. To assess the influence of pili type on virulence in this model, 80 rats were challenged with either type III or type IV pilated organisms and the frequency of rats with cortical abscesses were compared at 1 wk. A significantly greater number of rats inoculated with type IV pilated Proteus manifested macroscopic evidence of infection. These results suggest that pili play a role in the pathogenesis of ascending pyelonephritis.

This content is only available as a PDF.